Refactor caching and memory management components
All checks were successful
Release Tag / release (push) Successful in 9s
All checks were successful
Release Tag / release (push) Successful in 9s
- Updated the caching logic to utilize a predictive cache warmer, enhancing content prefetching based on access patterns. - Replaced the legacy warming system with a more efficient predictive approach, allowing for better performance and resource management. - Refactored memory management to integrate dynamic cache size adjustments based on system memory usage, improving overall efficiency. - Simplified the VFS interface and improved concurrency handling with sharded locks for better performance in multi-threaded environments. - Enhanced tests to validate the new caching and memory management behaviors, ensuring reliability and performance improvements.
This commit is contained in:
@@ -1,130 +0,0 @@
|
||||
package memory
|
||||
|
||||
import (
|
||||
"s1d3sw1ped/steamcache2/vfs"
|
||||
"sync"
|
||||
"sync/atomic"
|
||||
"time"
|
||||
)
|
||||
|
||||
// DynamicCacheManager manages cache size adjustments based on system memory usage
|
||||
type DynamicCacheManager struct {
|
||||
originalCacheSize uint64
|
||||
currentCacheSize uint64
|
||||
memoryMonitor *MemoryMonitor
|
||||
cache vfs.VFS
|
||||
adjustmentInterval time.Duration
|
||||
lastAdjustment time.Time
|
||||
mu sync.RWMutex
|
||||
adjustmentCount int64
|
||||
isAdjusting int32
|
||||
}
|
||||
|
||||
// NewDynamicCacheManager creates a new dynamic cache manager
|
||||
func NewDynamicCacheManager(cache vfs.VFS, originalSize uint64, memoryMonitor *MemoryMonitor) *DynamicCacheManager {
|
||||
return &DynamicCacheManager{
|
||||
originalCacheSize: originalSize,
|
||||
currentCacheSize: originalSize,
|
||||
memoryMonitor: memoryMonitor,
|
||||
cache: cache,
|
||||
adjustmentInterval: 30 * time.Second, // Adjust every 30 seconds
|
||||
}
|
||||
}
|
||||
|
||||
// Start begins the dynamic cache size adjustment process
|
||||
func (dcm *DynamicCacheManager) Start() {
|
||||
go dcm.adjustmentLoop()
|
||||
}
|
||||
|
||||
// GetCurrentCacheSize returns the current cache size
|
||||
func (dcm *DynamicCacheManager) GetCurrentCacheSize() uint64 {
|
||||
dcm.mu.RLock()
|
||||
defer dcm.mu.RUnlock()
|
||||
return atomic.LoadUint64(&dcm.currentCacheSize)
|
||||
}
|
||||
|
||||
// GetOriginalCacheSize returns the original cache size
|
||||
func (dcm *DynamicCacheManager) GetOriginalCacheSize() uint64 {
|
||||
dcm.mu.RLock()
|
||||
defer dcm.mu.RUnlock()
|
||||
return dcm.originalCacheSize
|
||||
}
|
||||
|
||||
// GetAdjustmentCount returns the number of adjustments made
|
||||
func (dcm *DynamicCacheManager) GetAdjustmentCount() int64 {
|
||||
return atomic.LoadInt64(&dcm.adjustmentCount)
|
||||
}
|
||||
|
||||
// adjustmentLoop runs the cache size adjustment loop
|
||||
func (dcm *DynamicCacheManager) adjustmentLoop() {
|
||||
ticker := time.NewTicker(dcm.adjustmentInterval)
|
||||
defer ticker.Stop()
|
||||
|
||||
for range ticker.C {
|
||||
dcm.performAdjustment()
|
||||
}
|
||||
}
|
||||
|
||||
// performAdjustment performs a cache size adjustment if needed
|
||||
func (dcm *DynamicCacheManager) performAdjustment() {
|
||||
// Prevent concurrent adjustments
|
||||
if !atomic.CompareAndSwapInt32(&dcm.isAdjusting, 0, 1) {
|
||||
return
|
||||
}
|
||||
defer atomic.StoreInt32(&dcm.isAdjusting, 0)
|
||||
|
||||
// Check if enough time has passed since last adjustment
|
||||
if time.Since(dcm.lastAdjustment) < dcm.adjustmentInterval {
|
||||
return
|
||||
}
|
||||
|
||||
// Get recommended cache size
|
||||
recommendedSize := dcm.memoryMonitor.GetRecommendedCacheSize(dcm.originalCacheSize)
|
||||
currentSize := atomic.LoadUint64(&dcm.currentCacheSize)
|
||||
|
||||
// Only adjust if there's a significant difference (more than 5%)
|
||||
sizeDiff := float64(recommendedSize) / float64(currentSize)
|
||||
if sizeDiff < 0.95 || sizeDiff > 1.05 {
|
||||
dcm.adjustCacheSize(recommendedSize)
|
||||
dcm.lastAdjustment = time.Now()
|
||||
atomic.AddInt64(&dcm.adjustmentCount, 1)
|
||||
}
|
||||
}
|
||||
|
||||
// adjustCacheSize adjusts the cache size to the recommended size
|
||||
func (dcm *DynamicCacheManager) adjustCacheSize(newSize uint64) {
|
||||
dcm.mu.Lock()
|
||||
defer dcm.mu.Unlock()
|
||||
|
||||
oldSize := atomic.LoadUint64(&dcm.currentCacheSize)
|
||||
atomic.StoreUint64(&dcm.currentCacheSize, newSize)
|
||||
|
||||
// If we're reducing the cache size, trigger GC to free up memory
|
||||
if newSize < oldSize {
|
||||
// Calculate how much to free
|
||||
bytesToFree := oldSize - newSize
|
||||
|
||||
// Trigger GC on the cache to free up the excess memory
|
||||
// This is a simplified approach - in practice, you'd want to integrate
|
||||
// with the actual GC system to free the right amount
|
||||
if gcCache, ok := dcm.cache.(interface{ ForceGC(uint) }); ok {
|
||||
gcCache.ForceGC(uint(bytesToFree))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// GetStats returns statistics about the dynamic cache manager
|
||||
func (dcm *DynamicCacheManager) GetStats() map[string]interface{} {
|
||||
dcm.mu.RLock()
|
||||
defer dcm.mu.RUnlock()
|
||||
|
||||
return map[string]interface{}{
|
||||
"original_cache_size": dcm.originalCacheSize,
|
||||
"current_cache_size": atomic.LoadUint64(&dcm.currentCacheSize),
|
||||
"adjustment_count": atomic.LoadInt64(&dcm.adjustmentCount),
|
||||
"last_adjustment": dcm.lastAdjustment,
|
||||
"memory_utilization": dcm.memoryMonitor.GetMemoryUtilization(),
|
||||
"target_memory_usage": dcm.memoryMonitor.GetTargetMemoryUsage(),
|
||||
"current_memory_usage": dcm.memoryMonitor.GetCurrentMemoryUsage(),
|
||||
}
|
||||
}
|
||||
@@ -3,8 +3,10 @@ package memory
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"container/list"
|
||||
"io"
|
||||
"s1d3sw1ped/steamcache2/vfs"
|
||||
"s1d3sw1ped/steamcache2/vfs/locks"
|
||||
"s1d3sw1ped/steamcache2/vfs/lru"
|
||||
"s1d3sw1ped/steamcache2/vfs/types"
|
||||
"s1d3sw1ped/steamcache2/vfs/vfserror"
|
||||
"sort"
|
||||
@@ -13,32 +15,8 @@ import (
|
||||
"time"
|
||||
)
|
||||
|
||||
// VFS defines the interface for virtual file systems
|
||||
type VFS interface {
|
||||
// Create creates a new file at the given key
|
||||
Create(key string, size int64) (io.WriteCloser, error)
|
||||
|
||||
// Open opens the file at the given key for reading
|
||||
Open(key string) (io.ReadCloser, error)
|
||||
|
||||
// Delete removes the file at the given key
|
||||
Delete(key string) error
|
||||
|
||||
// Stat returns information about the file at the given key
|
||||
Stat(key string) (*types.FileInfo, error)
|
||||
|
||||
// Name returns the name of this VFS
|
||||
Name() string
|
||||
|
||||
// Size returns the current size of the VFS
|
||||
Size() int64
|
||||
|
||||
// Capacity returns the maximum capacity of the VFS
|
||||
Capacity() int64
|
||||
}
|
||||
|
||||
// Ensure MemoryFS implements VFS.
|
||||
var _ VFS = (*MemoryFS)(nil)
|
||||
var _ vfs.VFS = (*MemoryFS)(nil)
|
||||
|
||||
// MemoryFS is an in-memory virtual file system
|
||||
type MemoryFS struct {
|
||||
@@ -48,55 +26,10 @@ type MemoryFS struct {
|
||||
size int64
|
||||
mu sync.RWMutex
|
||||
keyLocks []sync.Map // Sharded lock pools for better concurrency
|
||||
LRU *lruList
|
||||
LRU *lru.LRUList[*types.FileInfo]
|
||||
timeUpdater *types.BatchedTimeUpdate // Batched time updates for better performance
|
||||
}
|
||||
|
||||
// Number of lock shards for reducing contention
|
||||
const numLockShards = 32
|
||||
|
||||
// lruList for time-decayed LRU eviction
|
||||
type lruList struct {
|
||||
list *list.List
|
||||
elem map[string]*list.Element
|
||||
}
|
||||
|
||||
func newLruList() *lruList {
|
||||
return &lruList{
|
||||
list: list.New(),
|
||||
elem: make(map[string]*list.Element),
|
||||
}
|
||||
}
|
||||
|
||||
func (l *lruList) Add(key string, fi *types.FileInfo) {
|
||||
elem := l.list.PushFront(fi)
|
||||
l.elem[key] = elem
|
||||
}
|
||||
|
||||
func (l *lruList) MoveToFront(key string, timeUpdater *types.BatchedTimeUpdate) {
|
||||
if elem, exists := l.elem[key]; exists {
|
||||
l.list.MoveToFront(elem)
|
||||
// Update the FileInfo in the element with new access time
|
||||
if fi := elem.Value.(*types.FileInfo); fi != nil {
|
||||
fi.UpdateAccessBatched(timeUpdater)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (l *lruList) Remove(key string) *types.FileInfo {
|
||||
if elem, exists := l.elem[key]; exists {
|
||||
delete(l.elem, key)
|
||||
if fi := l.list.Remove(elem).(*types.FileInfo); fi != nil {
|
||||
return fi
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (l *lruList) Len() int {
|
||||
return l.list.Len()
|
||||
}
|
||||
|
||||
// New creates a new MemoryFS
|
||||
func New(capacity int64) *MemoryFS {
|
||||
if capacity <= 0 {
|
||||
@@ -104,7 +37,7 @@ func New(capacity int64) *MemoryFS {
|
||||
}
|
||||
|
||||
// Initialize sharded locks
|
||||
keyLocks := make([]sync.Map, numLockShards)
|
||||
keyLocks := make([]sync.Map, locks.NumLockShards)
|
||||
|
||||
return &MemoryFS{
|
||||
data: make(map[string]*bytes.Buffer),
|
||||
@@ -112,7 +45,7 @@ func New(capacity int64) *MemoryFS {
|
||||
capacity: capacity,
|
||||
size: 0,
|
||||
keyLocks: keyLocks,
|
||||
LRU: newLruList(),
|
||||
LRU: lru.NewLRUList[*types.FileInfo](),
|
||||
timeUpdater: types.NewBatchedTimeUpdate(100 * time.Millisecond), // Update time every 100ms
|
||||
}
|
||||
}
|
||||
@@ -163,24 +96,9 @@ func (m *MemoryFS) GetFragmentationStats() map[string]interface{} {
|
||||
}
|
||||
}
|
||||
|
||||
// getShardIndex returns the shard index for a given key
|
||||
func getShardIndex(key string) int {
|
||||
// Use FNV-1a hash for good distribution
|
||||
var h uint32 = 2166136261 // FNV offset basis
|
||||
for i := 0; i < len(key); i++ {
|
||||
h ^= uint32(key[i])
|
||||
h *= 16777619 // FNV prime
|
||||
}
|
||||
return int(h % numLockShards)
|
||||
}
|
||||
|
||||
// getKeyLock returns a lock for the given key using sharding
|
||||
func (m *MemoryFS) getKeyLock(key string) *sync.RWMutex {
|
||||
shardIndex := getShardIndex(key)
|
||||
shard := &m.keyLocks[shardIndex]
|
||||
|
||||
keyLock, _ := shard.LoadOrStore(key, &sync.RWMutex{})
|
||||
return keyLock.(*sync.RWMutex)
|
||||
return locks.GetKeyLock(m.keyLocks, key)
|
||||
}
|
||||
|
||||
// Create creates a new file
|
||||
@@ -391,7 +309,7 @@ func (m *MemoryFS) EvictLRU(bytesNeeded uint) uint {
|
||||
// Evict from LRU list until we free enough space
|
||||
for m.size > m.capacity-int64(bytesNeeded) && m.LRU.Len() > 0 {
|
||||
// Get the least recently used item
|
||||
elem := m.LRU.list.Back()
|
||||
elem := m.LRU.Back()
|
||||
if elem == nil {
|
||||
break
|
||||
}
|
||||
@@ -411,7 +329,7 @@ func (m *MemoryFS) EvictLRU(bytesNeeded uint) uint {
|
||||
evicted += uint(fi.Size)
|
||||
|
||||
// Clean up key lock
|
||||
shardIndex := getShardIndex(key)
|
||||
shardIndex := locks.GetShardIndex(key)
|
||||
m.keyLocks[shardIndex].Delete(key)
|
||||
}
|
||||
|
||||
@@ -459,7 +377,7 @@ func (m *MemoryFS) EvictBySize(bytesNeeded uint, ascending bool) uint {
|
||||
evicted += uint(fi.Size)
|
||||
|
||||
// Clean up key lock
|
||||
shardIndex := getShardIndex(key)
|
||||
shardIndex := locks.GetShardIndex(key)
|
||||
m.keyLocks[shardIndex].Delete(key)
|
||||
}
|
||||
|
||||
@@ -504,7 +422,7 @@ func (m *MemoryFS) EvictFIFO(bytesNeeded uint) uint {
|
||||
evicted += uint(fi.Size)
|
||||
|
||||
// Clean up key lock
|
||||
shardIndex := getShardIndex(key)
|
||||
shardIndex := locks.GetShardIndex(key)
|
||||
m.keyLocks[shardIndex].Delete(key)
|
||||
}
|
||||
|
||||
|
||||
@@ -17,6 +17,15 @@ type MemoryMonitor struct {
|
||||
ctx chan struct{}
|
||||
stopChan chan struct{}
|
||||
isMonitoring int32
|
||||
|
||||
// Dynamic cache management fields
|
||||
originalCacheSize uint64
|
||||
currentCacheSize uint64
|
||||
cache interface{} // Generic cache interface
|
||||
adjustmentInterval time.Duration
|
||||
lastAdjustment time.Time
|
||||
adjustmentCount int64
|
||||
isAdjusting int32
|
||||
}
|
||||
|
||||
// NewMemoryMonitor creates a new memory monitor
|
||||
@@ -27,9 +36,19 @@ func NewMemoryMonitor(targetMemoryUsage uint64, monitoringInterval time.Duration
|
||||
adjustmentThreshold: adjustmentThreshold,
|
||||
ctx: make(chan struct{}),
|
||||
stopChan: make(chan struct{}),
|
||||
adjustmentInterval: 30 * time.Second, // Default adjustment interval
|
||||
}
|
||||
}
|
||||
|
||||
// NewMemoryMonitorWithCache creates a new memory monitor with cache management
|
||||
func NewMemoryMonitorWithCache(targetMemoryUsage uint64, monitoringInterval time.Duration, adjustmentThreshold float64, cache interface{}, originalCacheSize uint64) *MemoryMonitor {
|
||||
mm := NewMemoryMonitor(targetMemoryUsage, monitoringInterval, adjustmentThreshold)
|
||||
mm.cache = cache
|
||||
mm.originalCacheSize = originalCacheSize
|
||||
mm.currentCacheSize = originalCacheSize
|
||||
return mm
|
||||
}
|
||||
|
||||
// Start begins monitoring memory usage
|
||||
func (mm *MemoryMonitor) Start() {
|
||||
if atomic.CompareAndSwapInt32(&mm.isMonitoring, 0, 1) {
|
||||
@@ -151,3 +170,105 @@ func (mm *MemoryMonitor) GetMemoryStats() map[string]interface{} {
|
||||
"gc_pause_total": m.PauseTotalNs,
|
||||
}
|
||||
}
|
||||
|
||||
// Dynamic Cache Management Methods
|
||||
|
||||
// StartDynamicAdjustment begins the dynamic cache size adjustment process
|
||||
func (mm *MemoryMonitor) StartDynamicAdjustment() {
|
||||
if mm.cache != nil {
|
||||
go mm.adjustmentLoop()
|
||||
}
|
||||
}
|
||||
|
||||
// GetCurrentCacheSize returns the current cache size
|
||||
func (mm *MemoryMonitor) GetCurrentCacheSize() uint64 {
|
||||
mm.mu.RLock()
|
||||
defer mm.mu.RUnlock()
|
||||
return atomic.LoadUint64(&mm.currentCacheSize)
|
||||
}
|
||||
|
||||
// GetOriginalCacheSize returns the original cache size
|
||||
func (mm *MemoryMonitor) GetOriginalCacheSize() uint64 {
|
||||
mm.mu.RLock()
|
||||
defer mm.mu.RUnlock()
|
||||
return mm.originalCacheSize
|
||||
}
|
||||
|
||||
// GetAdjustmentCount returns the number of adjustments made
|
||||
func (mm *MemoryMonitor) GetAdjustmentCount() int64 {
|
||||
return atomic.LoadInt64(&mm.adjustmentCount)
|
||||
}
|
||||
|
||||
// adjustmentLoop runs the cache size adjustment loop
|
||||
func (mm *MemoryMonitor) adjustmentLoop() {
|
||||
ticker := time.NewTicker(mm.adjustmentInterval)
|
||||
defer ticker.Stop()
|
||||
|
||||
for range ticker.C {
|
||||
mm.performAdjustment()
|
||||
}
|
||||
}
|
||||
|
||||
// performAdjustment performs a cache size adjustment if needed
|
||||
func (mm *MemoryMonitor) performAdjustment() {
|
||||
// Prevent concurrent adjustments
|
||||
if !atomic.CompareAndSwapInt32(&mm.isAdjusting, 0, 1) {
|
||||
return
|
||||
}
|
||||
defer atomic.StoreInt32(&mm.isAdjusting, 0)
|
||||
|
||||
// Check if enough time has passed since last adjustment
|
||||
if time.Since(mm.lastAdjustment) < mm.adjustmentInterval {
|
||||
return
|
||||
}
|
||||
|
||||
// Get recommended cache size
|
||||
recommendedSize := mm.GetRecommendedCacheSize(mm.originalCacheSize)
|
||||
currentSize := atomic.LoadUint64(&mm.currentCacheSize)
|
||||
|
||||
// Only adjust if there's a significant difference (more than 5%)
|
||||
sizeDiff := float64(recommendedSize) / float64(currentSize)
|
||||
if sizeDiff < 0.95 || sizeDiff > 1.05 {
|
||||
mm.adjustCacheSize(recommendedSize)
|
||||
mm.lastAdjustment = time.Now()
|
||||
atomic.AddInt64(&mm.adjustmentCount, 1)
|
||||
}
|
||||
}
|
||||
|
||||
// adjustCacheSize adjusts the cache size to the recommended size
|
||||
func (mm *MemoryMonitor) adjustCacheSize(newSize uint64) {
|
||||
mm.mu.Lock()
|
||||
defer mm.mu.Unlock()
|
||||
|
||||
oldSize := atomic.LoadUint64(&mm.currentCacheSize)
|
||||
atomic.StoreUint64(&mm.currentCacheSize, newSize)
|
||||
|
||||
// If we're reducing the cache size, trigger GC to free up memory
|
||||
if newSize < oldSize {
|
||||
// Calculate how much to free
|
||||
bytesToFree := oldSize - newSize
|
||||
|
||||
// Trigger GC on the cache to free up the excess memory
|
||||
// This is a simplified approach - in practice, you'd want to integrate
|
||||
// with the actual GC system to free the right amount
|
||||
if gcCache, ok := mm.cache.(interface{ ForceGC(uint) }); ok {
|
||||
gcCache.ForceGC(uint(bytesToFree))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// GetDynamicStats returns statistics about the dynamic cache manager
|
||||
func (mm *MemoryMonitor) GetDynamicStats() map[string]interface{} {
|
||||
mm.mu.RLock()
|
||||
defer mm.mu.RUnlock()
|
||||
|
||||
return map[string]interface{}{
|
||||
"original_cache_size": mm.originalCacheSize,
|
||||
"current_cache_size": atomic.LoadUint64(&mm.currentCacheSize),
|
||||
"adjustment_count": atomic.LoadInt64(&mm.adjustmentCount),
|
||||
"last_adjustment": mm.lastAdjustment,
|
||||
"memory_utilization": mm.GetMemoryUtilization(),
|
||||
"target_memory_usage": mm.GetTargetMemoryUsage(),
|
||||
"current_memory_usage": mm.GetCurrentMemoryUsage(),
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user