Files
steamcache2/vfs/memory/memory.go
Justin Harms 45ae234694 Enhance caching mechanisms and introduce adaptive features
- Updated caching logic to support size-based promotion filtering, ensuring that not all files may be promoted based on size constraints.
- Implemented adaptive caching strategies with a new AdaptiveCacheManager to analyze access patterns and adjust caching strategies dynamically.
- Introduced predictive caching features with a PredictiveCacheManager to prefetch content based on access patterns.
- Added a CacheWarmer to preload popular content into the cache, improving access times for frequently requested files.
- Refactored memory management with a DynamicCacheManager to adjust cache sizes based on system memory usage.
- Enhanced VFS interface and file metadata handling to support new features and improve performance.
- Updated tests to validate new caching behaviors and ensure reliability of the caching system.
2025-09-21 22:47:13 -05:00

513 lines
11 KiB
Go

// vfs/memory/memory.go
package memory
import (
"bytes"
"container/list"
"io"
"s1d3sw1ped/SteamCache2/vfs/types"
"s1d3sw1ped/SteamCache2/vfs/vfserror"
"sort"
"strings"
"sync"
"time"
)
// VFS defines the interface for virtual file systems
type VFS interface {
// Create creates a new file at the given key
Create(key string, size int64) (io.WriteCloser, error)
// Open opens the file at the given key for reading
Open(key string) (io.ReadCloser, error)
// Delete removes the file at the given key
Delete(key string) error
// Stat returns information about the file at the given key
Stat(key string) (*types.FileInfo, error)
// Name returns the name of this VFS
Name() string
// Size returns the current size of the VFS
Size() int64
// Capacity returns the maximum capacity of the VFS
Capacity() int64
}
// Ensure MemoryFS implements VFS.
var _ VFS = (*MemoryFS)(nil)
// MemoryFS is an in-memory virtual file system
type MemoryFS struct {
data map[string]*bytes.Buffer
info map[string]*types.FileInfo
capacity int64
size int64
mu sync.RWMutex
keyLocks []sync.Map // Sharded lock pools for better concurrency
LRU *lruList
timeUpdater *types.BatchedTimeUpdate // Batched time updates for better performance
}
// Number of lock shards for reducing contention
const numLockShards = 32
// lruList for time-decayed LRU eviction
type lruList struct {
list *list.List
elem map[string]*list.Element
}
func newLruList() *lruList {
return &lruList{
list: list.New(),
elem: make(map[string]*list.Element),
}
}
func (l *lruList) Add(key string, fi *types.FileInfo) {
elem := l.list.PushFront(fi)
l.elem[key] = elem
}
func (l *lruList) MoveToFront(key string, timeUpdater *types.BatchedTimeUpdate) {
if elem, exists := l.elem[key]; exists {
l.list.MoveToFront(elem)
// Update the FileInfo in the element with new access time
if fi := elem.Value.(*types.FileInfo); fi != nil {
fi.UpdateAccessBatched(timeUpdater)
}
}
}
func (l *lruList) Remove(key string) *types.FileInfo {
if elem, exists := l.elem[key]; exists {
delete(l.elem, key)
if fi := l.list.Remove(elem).(*types.FileInfo); fi != nil {
return fi
}
}
return nil
}
func (l *lruList) Len() int {
return l.list.Len()
}
// New creates a new MemoryFS
func New(capacity int64) *MemoryFS {
if capacity <= 0 {
panic("memory capacity must be greater than 0")
}
// Initialize sharded locks
keyLocks := make([]sync.Map, numLockShards)
return &MemoryFS{
data: make(map[string]*bytes.Buffer),
info: make(map[string]*types.FileInfo),
capacity: capacity,
size: 0,
keyLocks: keyLocks,
LRU: newLruList(),
timeUpdater: types.NewBatchedTimeUpdate(100 * time.Millisecond), // Update time every 100ms
}
}
// Name returns the name of this VFS
func (m *MemoryFS) Name() string {
return "MemoryFS"
}
// Size returns the current size
func (m *MemoryFS) Size() int64 {
m.mu.RLock()
defer m.mu.RUnlock()
return m.size
}
// Capacity returns the maximum capacity
func (m *MemoryFS) Capacity() int64 {
return m.capacity
}
// GetFragmentationStats returns memory fragmentation statistics
func (m *MemoryFS) GetFragmentationStats() map[string]interface{} {
m.mu.RLock()
defer m.mu.RUnlock()
var totalCapacity int64
var totalUsed int64
var bufferCount int
for _, buffer := range m.data {
totalCapacity += int64(buffer.Cap())
totalUsed += int64(buffer.Len())
bufferCount++
}
fragmentationRatio := float64(0)
if totalCapacity > 0 {
fragmentationRatio = float64(totalCapacity-totalUsed) / float64(totalCapacity)
}
return map[string]interface{}{
"buffer_count": bufferCount,
"total_capacity": totalCapacity,
"total_used": totalUsed,
"fragmentation_ratio": fragmentationRatio,
"average_buffer_size": float64(totalUsed) / float64(bufferCount),
}
}
// getShardIndex returns the shard index for a given key
func getShardIndex(key string) int {
// Use FNV-1a hash for good distribution
var h uint32 = 2166136261 // FNV offset basis
for i := 0; i < len(key); i++ {
h ^= uint32(key[i])
h *= 16777619 // FNV prime
}
return int(h % numLockShards)
}
// getKeyLock returns a lock for the given key using sharding
func (m *MemoryFS) getKeyLock(key string) *sync.RWMutex {
shardIndex := getShardIndex(key)
shard := &m.keyLocks[shardIndex]
keyLock, _ := shard.LoadOrStore(key, &sync.RWMutex{})
return keyLock.(*sync.RWMutex)
}
// Create creates a new file
func (m *MemoryFS) Create(key string, size int64) (io.WriteCloser, error) {
if key == "" {
return nil, vfserror.ErrInvalidKey
}
if key[0] == '/' {
return nil, vfserror.ErrInvalidKey
}
// Sanitize key to prevent path traversal
if strings.Contains(key, "..") {
return nil, vfserror.ErrInvalidKey
}
keyMu := m.getKeyLock(key)
keyMu.Lock()
defer keyMu.Unlock()
m.mu.Lock()
// Check if file already exists and handle overwrite
if fi, exists := m.info[key]; exists {
m.size -= fi.Size
m.LRU.Remove(key)
delete(m.info, key)
delete(m.data, key)
}
buffer := &bytes.Buffer{}
m.data[key] = buffer
fi := types.NewFileInfo(key, size)
m.info[key] = fi
m.LRU.Add(key, fi)
// Initialize access time with current time
fi.UpdateAccessBatched(m.timeUpdater)
m.size += size
m.mu.Unlock()
return &memoryWriteCloser{
buffer: buffer,
memory: m,
key: key,
}, nil
}
// memoryWriteCloser implements io.WriteCloser for memory files
type memoryWriteCloser struct {
buffer *bytes.Buffer
memory *MemoryFS
key string
}
func (mwc *memoryWriteCloser) Write(p []byte) (n int, err error) {
return mwc.buffer.Write(p)
}
func (mwc *memoryWriteCloser) Close() error {
// Update the actual size in FileInfo
mwc.memory.mu.Lock()
if fi, exists := mwc.memory.info[mwc.key]; exists {
actualSize := int64(mwc.buffer.Len())
sizeDiff := actualSize - fi.Size
fi.Size = actualSize
mwc.memory.size += sizeDiff
}
mwc.memory.mu.Unlock()
return nil
}
// Open opens a file for reading
func (m *MemoryFS) Open(key string) (io.ReadCloser, error) {
if key == "" {
return nil, vfserror.ErrInvalidKey
}
if key[0] == '/' {
return nil, vfserror.ErrInvalidKey
}
if strings.Contains(key, "..") {
return nil, vfserror.ErrInvalidKey
}
keyMu := m.getKeyLock(key)
keyMu.RLock()
defer keyMu.RUnlock()
m.mu.Lock()
fi, exists := m.info[key]
if !exists {
m.mu.Unlock()
return nil, vfserror.ErrNotFound
}
fi.UpdateAccessBatched(m.timeUpdater)
m.LRU.MoveToFront(key, m.timeUpdater)
buffer, exists := m.data[key]
if !exists {
m.mu.Unlock()
return nil, vfserror.ErrNotFound
}
// Use zero-copy approach - return reader that reads directly from buffer
m.mu.Unlock()
return &memoryReadCloser{
buffer: buffer,
offset: 0,
}, nil
}
// memoryReadCloser implements io.ReadCloser for memory files with zero-copy optimization
type memoryReadCloser struct {
buffer *bytes.Buffer
offset int64
}
func (mrc *memoryReadCloser) Read(p []byte) (n int, err error) {
if mrc.offset >= int64(mrc.buffer.Len()) {
return 0, io.EOF
}
// Zero-copy read directly from buffer
available := mrc.buffer.Len() - int(mrc.offset)
toRead := len(p)
if toRead > available {
toRead = available
}
// Read directly from buffer without copying
data := mrc.buffer.Bytes()
copy(p, data[mrc.offset:mrc.offset+int64(toRead)])
mrc.offset += int64(toRead)
return toRead, nil
}
func (mrc *memoryReadCloser) Close() error {
return nil
}
// Delete removes a file
func (m *MemoryFS) Delete(key string) error {
if key == "" {
return vfserror.ErrInvalidKey
}
if key[0] == '/' {
return vfserror.ErrInvalidKey
}
if strings.Contains(key, "..") {
return vfserror.ErrInvalidKey
}
keyMu := m.getKeyLock(key)
keyMu.Lock()
defer keyMu.Unlock()
m.mu.Lock()
fi, exists := m.info[key]
if !exists {
m.mu.Unlock()
return vfserror.ErrNotFound
}
m.size -= fi.Size
m.LRU.Remove(key)
delete(m.info, key)
delete(m.data, key)
m.mu.Unlock()
return nil
}
// Stat returns file information
func (m *MemoryFS) Stat(key string) (*types.FileInfo, error) {
if key == "" {
return nil, vfserror.ErrInvalidKey
}
if key[0] == '/' {
return nil, vfserror.ErrInvalidKey
}
if strings.Contains(key, "..") {
return nil, vfserror.ErrInvalidKey
}
keyMu := m.getKeyLock(key)
keyMu.RLock()
defer keyMu.RUnlock()
m.mu.RLock()
defer m.mu.RUnlock()
if fi, ok := m.info[key]; ok {
return fi, nil
}
return nil, vfserror.ErrNotFound
}
// EvictLRU evicts the least recently used files to free up space
func (m *MemoryFS) EvictLRU(bytesNeeded uint) uint {
m.mu.Lock()
defer m.mu.Unlock()
var evicted uint
// Evict from LRU list until we free enough space
for m.size > m.capacity-int64(bytesNeeded) && m.LRU.Len() > 0 {
// Get the least recently used item
elem := m.LRU.list.Back()
if elem == nil {
break
}
fi := elem.Value.(*types.FileInfo)
key := fi.Key
// Remove from LRU
m.LRU.Remove(key)
// Remove from maps
delete(m.info, key)
delete(m.data, key)
// Update size
m.size -= fi.Size
evicted += uint(fi.Size)
// Clean up key lock
shardIndex := getShardIndex(key)
m.keyLocks[shardIndex].Delete(key)
}
return evicted
}
// EvictBySize evicts files by size (ascending = smallest first, descending = largest first)
func (m *MemoryFS) EvictBySize(bytesNeeded uint, ascending bool) uint {
m.mu.Lock()
defer m.mu.Unlock()
var evicted uint
var candidates []*types.FileInfo
// Collect all files
for _, fi := range m.info {
candidates = append(candidates, fi)
}
// Sort by size
sort.Slice(candidates, func(i, j int) bool {
if ascending {
return candidates[i].Size < candidates[j].Size
}
return candidates[i].Size > candidates[j].Size
})
// Evict files until we free enough space
for _, fi := range candidates {
if m.size <= m.capacity-int64(bytesNeeded) {
break
}
key := fi.Key
// Remove from LRU
m.LRU.Remove(key)
// Remove from maps
delete(m.info, key)
delete(m.data, key)
// Update size
m.size -= fi.Size
evicted += uint(fi.Size)
// Clean up key lock
shardIndex := getShardIndex(key)
m.keyLocks[shardIndex].Delete(key)
}
return evicted
}
// EvictFIFO evicts files using FIFO (oldest creation time first)
func (m *MemoryFS) EvictFIFO(bytesNeeded uint) uint {
m.mu.Lock()
defer m.mu.Unlock()
var evicted uint
var candidates []*types.FileInfo
// Collect all files
for _, fi := range m.info {
candidates = append(candidates, fi)
}
// Sort by creation time (oldest first)
sort.Slice(candidates, func(i, j int) bool {
return candidates[i].CTime.Before(candidates[j].CTime)
})
// Evict oldest files until we free enough space
for _, fi := range candidates {
if m.size <= m.capacity-int64(bytesNeeded) {
break
}
key := fi.Key
// Remove from LRU
m.LRU.Remove(key)
// Remove from maps
delete(m.info, key)
delete(m.data, key)
// Update size
m.size -= fi.Size
evicted += uint(fi.Size)
// Clean up key lock
shardIndex := getShardIndex(key)
m.keyLocks[shardIndex].Delete(key)
}
return evicted
}