Enhance caching mechanisms and introduce adaptive features

- Updated caching logic to support size-based promotion filtering, ensuring that not all files may be promoted based on size constraints.
- Implemented adaptive caching strategies with a new AdaptiveCacheManager to analyze access patterns and adjust caching strategies dynamically.
- Introduced predictive caching features with a PredictiveCacheManager to prefetch content based on access patterns.
- Added a CacheWarmer to preload popular content into the cache, improving access times for frequently requested files.
- Refactored memory management with a DynamicCacheManager to adjust cache sizes based on system memory usage.
- Enhanced VFS interface and file metadata handling to support new features and improve performance.
- Updated tests to validate new caching behaviors and ensure reliability of the caching system.
This commit is contained in:
2025-09-21 22:47:13 -05:00
parent bbe014e334
commit 45ae234694
12 changed files with 2212 additions and 189 deletions

273
vfs/adaptive/adaptive.go Normal file
View File

@@ -0,0 +1,273 @@
package adaptive
import (
"context"
"sync"
"sync/atomic"
"time"
)
// WorkloadPattern represents different types of workload patterns
type WorkloadPattern int
const (
PatternUnknown WorkloadPattern = iota
PatternSequential // Sequential file access (e.g., game installation)
PatternRandom // Random file access (e.g., game updates)
PatternBurst // Burst access (e.g., multiple users downloading same game)
PatternSteady // Steady access (e.g., popular games being accessed regularly)
)
// CacheStrategy represents different caching strategies
type CacheStrategy int
const (
StrategyLRU CacheStrategy = iota
StrategyLFU
StrategySizeBased
StrategyHybrid
StrategyPredictive
)
// WorkloadAnalyzer analyzes access patterns to determine optimal caching strategies
type WorkloadAnalyzer struct {
accessHistory map[string]*AccessInfo
patternCounts map[WorkloadPattern]int64
mu sync.RWMutex
analysisInterval time.Duration
ctx context.Context
cancel context.CancelFunc
}
// AccessInfo tracks access patterns for individual files
type AccessInfo struct {
Key string
AccessCount int64
LastAccess time.Time
FirstAccess time.Time
AccessTimes []time.Time
Size int64
AccessPattern WorkloadPattern
mu sync.RWMutex
}
// AdaptiveCacheManager manages adaptive caching strategies
type AdaptiveCacheManager struct {
analyzer *WorkloadAnalyzer
currentStrategy CacheStrategy
adaptationCount int64
mu sync.RWMutex
}
// NewWorkloadAnalyzer creates a new workload analyzer
func NewWorkloadAnalyzer(analysisInterval time.Duration) *WorkloadAnalyzer {
ctx, cancel := context.WithCancel(context.Background())
analyzer := &WorkloadAnalyzer{
accessHistory: make(map[string]*AccessInfo),
patternCounts: make(map[WorkloadPattern]int64),
analysisInterval: analysisInterval,
ctx: ctx,
cancel: cancel,
}
// Start background analysis with much longer interval to reduce overhead
go analyzer.analyzePatterns()
return analyzer
}
// RecordAccess records a file access for pattern analysis (lightweight version)
func (wa *WorkloadAnalyzer) RecordAccess(key string, size int64) {
// Use read lock first for better performance
wa.mu.RLock()
info, exists := wa.accessHistory[key]
wa.mu.RUnlock()
if !exists {
// Only acquire write lock when creating new entry
wa.mu.Lock()
// Double-check after acquiring write lock
if _, exists = wa.accessHistory[key]; !exists {
info = &AccessInfo{
Key: key,
AccessCount: 1,
LastAccess: time.Now(),
FirstAccess: time.Now(),
AccessTimes: []time.Time{time.Now()},
Size: size,
}
wa.accessHistory[key] = info
}
wa.mu.Unlock()
} else {
// Lightweight update - just increment counter and update timestamp
info.mu.Lock()
info.AccessCount++
info.LastAccess = time.Now()
// Only keep last 10 access times to reduce memory overhead
if len(info.AccessTimes) > 10 {
info.AccessTimes = info.AccessTimes[len(info.AccessTimes)-10:]
} else {
info.AccessTimes = append(info.AccessTimes, time.Now())
}
info.mu.Unlock()
}
}
// analyzePatterns analyzes access patterns in the background
func (wa *WorkloadAnalyzer) analyzePatterns() {
ticker := time.NewTicker(wa.analysisInterval)
defer ticker.Stop()
for {
select {
case <-wa.ctx.Done():
return
case <-ticker.C:
wa.performAnalysis()
}
}
}
// performAnalysis analyzes current access patterns
func (wa *WorkloadAnalyzer) performAnalysis() {
wa.mu.Lock()
defer wa.mu.Unlock()
// Reset pattern counts
wa.patternCounts = make(map[WorkloadPattern]int64)
now := time.Now()
cutoff := now.Add(-wa.analysisInterval * 2) // Analyze last 2 intervals
for _, info := range wa.accessHistory {
info.mu.RLock()
if info.LastAccess.After(cutoff) {
pattern := wa.determinePattern(info)
info.AccessPattern = pattern
wa.patternCounts[pattern]++
}
info.mu.RUnlock()
}
}
// determinePattern determines the access pattern for a file
func (wa *WorkloadAnalyzer) determinePattern(info *AccessInfo) WorkloadPattern {
if len(info.AccessTimes) < 3 {
return PatternUnknown
}
// Analyze access timing patterns
intervals := make([]time.Duration, len(info.AccessTimes)-1)
for i := 1; i < len(info.AccessTimes); i++ {
intervals[i-1] = info.AccessTimes[i].Sub(info.AccessTimes[i-1])
}
// Calculate variance in access intervals
var sum, sumSquares time.Duration
for _, interval := range intervals {
sum += interval
sumSquares += interval * interval
}
avg := sum / time.Duration(len(intervals))
variance := (sumSquares / time.Duration(len(intervals))) - (avg * avg)
// Determine pattern based on variance and access count
if info.AccessCount > 10 && variance < time.Minute {
return PatternBurst
} else if info.AccessCount > 5 && variance < time.Hour {
return PatternSteady
} else if variance < time.Minute*5 {
return PatternSequential
} else {
return PatternRandom
}
}
// GetDominantPattern returns the most common access pattern
func (wa *WorkloadAnalyzer) GetDominantPattern() WorkloadPattern {
wa.mu.RLock()
defer wa.mu.RUnlock()
var maxCount int64
var dominantPattern WorkloadPattern
for pattern, count := range wa.patternCounts {
if count > maxCount {
maxCount = count
dominantPattern = pattern
}
}
return dominantPattern
}
// GetAccessInfo returns access information for a key
func (wa *WorkloadAnalyzer) GetAccessInfo(key string) *AccessInfo {
wa.mu.RLock()
defer wa.mu.RUnlock()
return wa.accessHistory[key]
}
// Stop stops the workload analyzer
func (wa *WorkloadAnalyzer) Stop() {
wa.cancel()
}
// NewAdaptiveCacheManager creates a new adaptive cache manager
func NewAdaptiveCacheManager(analysisInterval time.Duration) *AdaptiveCacheManager {
return &AdaptiveCacheManager{
analyzer: NewWorkloadAnalyzer(analysisInterval),
currentStrategy: StrategyLRU, // Start with LRU
}
}
// AdaptStrategy adapts the caching strategy based on workload patterns
func (acm *AdaptiveCacheManager) AdaptStrategy() CacheStrategy {
acm.mu.Lock()
defer acm.mu.Unlock()
dominantPattern := acm.analyzer.GetDominantPattern()
// Adapt strategy based on dominant pattern
switch dominantPattern {
case PatternBurst:
acm.currentStrategy = StrategyLFU // LFU is good for burst patterns
case PatternSteady:
acm.currentStrategy = StrategyHybrid // Hybrid for steady patterns
case PatternSequential:
acm.currentStrategy = StrategySizeBased // Size-based for sequential
case PatternRandom:
acm.currentStrategy = StrategyLRU // LRU for random patterns
default:
acm.currentStrategy = StrategyLRU // Default to LRU
}
atomic.AddInt64(&acm.adaptationCount, 1)
return acm.currentStrategy
}
// GetCurrentStrategy returns the current caching strategy
func (acm *AdaptiveCacheManager) GetCurrentStrategy() CacheStrategy {
acm.mu.RLock()
defer acm.mu.RUnlock()
return acm.currentStrategy
}
// RecordAccess records a file access for analysis
func (acm *AdaptiveCacheManager) RecordAccess(key string, size int64) {
acm.analyzer.RecordAccess(key, size)
}
// GetAdaptationCount returns the number of strategy adaptations
func (acm *AdaptiveCacheManager) GetAdaptationCount() int64 {
return atomic.LoadInt64(&acm.adaptationCount)
}
// Stop stops the adaptive cache manager
func (acm *AdaptiveCacheManager) Stop() {
acm.analyzer.Stop()
}

289
vfs/cache/cache.go vendored
View File

@@ -6,6 +6,7 @@ import (
"s1d3sw1ped/SteamCache2/vfs"
"s1d3sw1ped/SteamCache2/vfs/vfserror"
"sync"
"sync/atomic"
)
// TieredCache implements a two-tier cache with fast (memory) and slow (disk) storage
@@ -16,6 +17,12 @@ type TieredCache struct {
mu sync.RWMutex
}
// LockFreeTieredCache implements a lock-free two-tier cache for better concurrency
type LockFreeTieredCache struct {
fast *atomic.Value // Memory cache (fast) - atomic.Value for lock-free access
slow *atomic.Value // Disk cache (slow) - atomic.Value for lock-free access
}
// New creates a new tiered cache
func New() *TieredCache {
return &TieredCache{}
@@ -53,7 +60,7 @@ func (tc *TieredCache) Create(key string, size int64) (io.WriteCloser, error) {
return nil, vfserror.ErrNotFound
}
// Open opens a file, checking fast tier first, then slow tier
// Open opens a file, checking fast tier first, then slow tier with promotion
func (tc *TieredCache) Open(key string) (io.ReadCloser, error) {
tc.mu.RLock()
defer tc.mu.RUnlock()
@@ -65,9 +72,30 @@ func (tc *TieredCache) Open(key string) (io.ReadCloser, error) {
}
}
// Fall back to slow tier (disk)
// Fall back to slow tier (disk) and promote to fast tier
if tc.slow != nil {
return tc.slow.Open(key)
reader, err := tc.slow.Open(key)
if err != nil {
return nil, err
}
// If we have both tiers, check if we should promote the file to fast tier
if tc.fast != nil {
// Check file size before promoting - don't promote if larger than available memory cache space
if info, err := tc.slow.Stat(key); err == nil {
availableSpace := tc.fast.Capacity() - tc.fast.Size()
// Only promote if file fits in available space (with 10% buffer for safety)
if info.Size <= int64(float64(availableSpace)*0.9) {
// Create a new reader for promotion to avoid interfering with the returned reader
promotionReader, err := tc.slow.Open(key)
if err == nil {
go tc.promoteToFast(key, promotionReader)
}
}
}
}
return reader, nil
}
return nil, vfserror.ErrNotFound
@@ -151,3 +179,258 @@ func (tc *TieredCache) Capacity() int64 {
}
return total
}
// promoteToFast promotes a file from slow tier to fast tier
func (tc *TieredCache) promoteToFast(key string, reader io.ReadCloser) {
defer reader.Close()
// Get file info from slow tier to determine size
tc.mu.RLock()
var size int64
if tc.slow != nil {
if info, err := tc.slow.Stat(key); err == nil {
size = info.Size
} else {
tc.mu.RUnlock()
return // Skip promotion if we can't get file info
}
}
tc.mu.RUnlock()
// Check if file fits in available memory cache space
tc.mu.RLock()
if tc.fast != nil {
availableSpace := tc.fast.Capacity() - tc.fast.Size()
// Only promote if file fits in available space (with 10% buffer for safety)
if size > int64(float64(availableSpace)*0.9) {
tc.mu.RUnlock()
return // Skip promotion if file is too large
}
}
tc.mu.RUnlock()
// Read the entire file content
content, err := io.ReadAll(reader)
if err != nil {
return // Skip promotion if read fails
}
// Create the file in fast tier
tc.mu.RLock()
if tc.fast != nil {
writer, err := tc.fast.Create(key, size)
if err == nil {
// Write content to fast tier
writer.Write(content)
writer.Close()
}
}
tc.mu.RUnlock()
}
// NewLockFree creates a new lock-free tiered cache
func NewLockFree() *LockFreeTieredCache {
return &LockFreeTieredCache{
fast: &atomic.Value{},
slow: &atomic.Value{},
}
}
// SetFast sets the fast (memory) tier atomically
func (lftc *LockFreeTieredCache) SetFast(vfs vfs.VFS) {
lftc.fast.Store(vfs)
}
// SetSlow sets the slow (disk) tier atomically
func (lftc *LockFreeTieredCache) SetSlow(vfs vfs.VFS) {
lftc.slow.Store(vfs)
}
// Create creates a new file, preferring the slow tier for persistence
func (lftc *LockFreeTieredCache) Create(key string, size int64) (io.WriteCloser, error) {
// Try slow tier first (disk) for better testability
if slow := lftc.slow.Load(); slow != nil {
if vfs, ok := slow.(vfs.VFS); ok {
return vfs.Create(key, size)
}
}
// Fall back to fast tier (memory)
if fast := lftc.fast.Load(); fast != nil {
if vfs, ok := fast.(vfs.VFS); ok {
return vfs.Create(key, size)
}
}
return nil, vfserror.ErrNotFound
}
// Open opens a file, checking fast tier first, then slow tier with promotion
func (lftc *LockFreeTieredCache) Open(key string) (io.ReadCloser, error) {
// Try fast tier first (memory)
if fast := lftc.fast.Load(); fast != nil {
if vfs, ok := fast.(vfs.VFS); ok {
if reader, err := vfs.Open(key); err == nil {
return reader, nil
}
}
}
// Fall back to slow tier (disk) and promote to fast tier
if slow := lftc.slow.Load(); slow != nil {
if vfs, ok := slow.(vfs.VFS); ok {
reader, err := vfs.Open(key)
if err != nil {
return nil, err
}
// If we have both tiers, promote the file to fast tier
if fast := lftc.fast.Load(); fast != nil {
// Create a new reader for promotion to avoid interfering with the returned reader
promotionReader, err := vfs.Open(key)
if err == nil {
go lftc.promoteToFast(key, promotionReader)
}
}
return reader, nil
}
}
return nil, vfserror.ErrNotFound
}
// Delete removes a file from all tiers
func (lftc *LockFreeTieredCache) Delete(key string) error {
var lastErr error
// Delete from fast tier
if fast := lftc.fast.Load(); fast != nil {
if vfs, ok := fast.(vfs.VFS); ok {
if err := vfs.Delete(key); err != nil {
lastErr = err
}
}
}
// Delete from slow tier
if slow := lftc.slow.Load(); slow != nil {
if vfs, ok := slow.(vfs.VFS); ok {
if err := vfs.Delete(key); err != nil {
lastErr = err
}
}
}
return lastErr
}
// Stat returns file information, checking fast tier first
func (lftc *LockFreeTieredCache) Stat(key string) (*vfs.FileInfo, error) {
// Try fast tier first (memory)
if fast := lftc.fast.Load(); fast != nil {
if vfs, ok := fast.(vfs.VFS); ok {
if info, err := vfs.Stat(key); err == nil {
return info, nil
}
}
}
// Fall back to slow tier (disk)
if slow := lftc.slow.Load(); slow != nil {
if vfs, ok := slow.(vfs.VFS); ok {
return vfs.Stat(key)
}
}
return nil, vfserror.ErrNotFound
}
// Name returns the cache name
func (lftc *LockFreeTieredCache) Name() string {
return "LockFreeTieredCache"
}
// Size returns the total size across all tiers
func (lftc *LockFreeTieredCache) Size() int64 {
var total int64
if fast := lftc.fast.Load(); fast != nil {
if vfs, ok := fast.(vfs.VFS); ok {
total += vfs.Size()
}
}
if slow := lftc.slow.Load(); slow != nil {
if vfs, ok := slow.(vfs.VFS); ok {
total += vfs.Size()
}
}
return total
}
// Capacity returns the total capacity across all tiers
func (lftc *LockFreeTieredCache) Capacity() int64 {
var total int64
if fast := lftc.fast.Load(); fast != nil {
if vfs, ok := fast.(vfs.VFS); ok {
total += vfs.Capacity()
}
}
if slow := lftc.slow.Load(); slow != nil {
if vfs, ok := slow.(vfs.VFS); ok {
total += vfs.Capacity()
}
}
return total
}
// promoteToFast promotes a file from slow tier to fast tier (lock-free version)
func (lftc *LockFreeTieredCache) promoteToFast(key string, reader io.ReadCloser) {
defer reader.Close()
// Get file info from slow tier to determine size
var size int64
if slow := lftc.slow.Load(); slow != nil {
if vfs, ok := slow.(vfs.VFS); ok {
if info, err := vfs.Stat(key); err == nil {
size = info.Size
} else {
return // Skip promotion if we can't get file info
}
}
}
// Check if file fits in available memory cache space
if fast := lftc.fast.Load(); fast != nil {
if vfs, ok := fast.(vfs.VFS); ok {
availableSpace := vfs.Capacity() - vfs.Size()
// Only promote if file fits in available space (with 10% buffer for safety)
if size > int64(float64(availableSpace)*0.9) {
return // Skip promotion if file is too large
}
}
}
// Read the entire file content
content, err := io.ReadAll(reader)
if err != nil {
return // Skip promotion if read fails
}
// Create the file in fast tier
if fast := lftc.fast.Load(); fast != nil {
if vfs, ok := fast.(vfs.VFS); ok {
writer, err := vfs.Create(key, size)
if err == nil {
// Write content to fast tier
writer.Write(content)
writer.Close()
}
}
}
}

View File

@@ -2,10 +2,14 @@
package gc
import (
"context"
"io"
"s1d3sw1ped/SteamCache2/vfs"
"s1d3sw1ped/SteamCache2/vfs/disk"
"s1d3sw1ped/SteamCache2/vfs/memory"
"sync"
"sync/atomic"
"time"
)
// GCAlgorithm represents different garbage collection strategies
@@ -238,3 +242,161 @@ func evictHybrid(v vfs.VFS, bytesNeeded uint) uint {
var AdaptivePromotionDeciderFunc = func() interface{} {
return nil
}
// AsyncGCFS wraps a GCFS with asynchronous garbage collection capabilities
type AsyncGCFS struct {
*GCFS
gcQueue chan gcRequest
ctx context.Context
cancel context.CancelFunc
wg sync.WaitGroup
gcRunning int32
preemptive bool
asyncThreshold float64 // Async GC threshold as percentage of capacity (e.g., 0.8 = 80%)
syncThreshold float64 // Sync GC threshold as percentage of capacity (e.g., 0.95 = 95%)
hardLimit float64 // Hard limit threshold (e.g., 1.0 = 100%)
}
type gcRequest struct {
bytesNeeded uint
priority int // Higher number = higher priority
}
// NewAsync creates a new AsyncGCFS with asynchronous garbage collection
func NewAsync(wrappedVFS vfs.VFS, algorithm GCAlgorithm, preemptive bool, asyncThreshold, syncThreshold, hardLimit float64) *AsyncGCFS {
ctx, cancel := context.WithCancel(context.Background())
asyncGC := &AsyncGCFS{
GCFS: New(wrappedVFS, algorithm),
gcQueue: make(chan gcRequest, 100), // Buffer for GC requests
ctx: ctx,
cancel: cancel,
preemptive: preemptive,
asyncThreshold: asyncThreshold,
syncThreshold: syncThreshold,
hardLimit: hardLimit,
}
// Start the background GC worker
asyncGC.wg.Add(1)
go asyncGC.gcWorker()
// Start preemptive GC if enabled
if preemptive {
asyncGC.wg.Add(1)
go asyncGC.preemptiveGC()
}
return asyncGC
}
// Create wraps the underlying Create method with hybrid GC (async + sync hard limits)
func (agc *AsyncGCFS) Create(key string, size int64) (io.WriteCloser, error) {
currentSize := agc.vfs.Size()
capacity := agc.vfs.Capacity()
projectedSize := currentSize + size
// Calculate utilization percentages
currentUtilization := float64(currentSize) / float64(capacity)
projectedUtilization := float64(projectedSize) / float64(capacity)
// Hard limit check - never exceed the hard limit
if projectedUtilization > agc.hardLimit {
needed := uint(projectedSize - capacity)
// Immediate sync GC to prevent exceeding hard limit
agc.gcFunc(agc.vfs, needed)
} else if projectedUtilization > agc.syncThreshold {
// Near hard limit - do immediate sync GC
needed := uint(projectedSize - int64(float64(capacity)*agc.syncThreshold))
agc.gcFunc(agc.vfs, needed)
} else if currentUtilization > agc.asyncThreshold {
// Above async threshold - queue for async GC
needed := uint(projectedSize - int64(float64(capacity)*agc.asyncThreshold))
select {
case agc.gcQueue <- gcRequest{bytesNeeded: needed, priority: 2}:
default:
// Queue full, do immediate GC
agc.gcFunc(agc.vfs, needed)
}
}
return agc.vfs.Create(key, size)
}
// gcWorker processes GC requests asynchronously
func (agc *AsyncGCFS) gcWorker() {
defer agc.wg.Done()
ticker := time.NewTicker(100 * time.Millisecond) // Check every 100ms
defer ticker.Stop()
for {
select {
case <-agc.ctx.Done():
return
case req := <-agc.gcQueue:
atomic.StoreInt32(&agc.gcRunning, 1)
agc.gcFunc(agc.vfs, req.bytesNeeded)
atomic.StoreInt32(&agc.gcRunning, 0)
case <-ticker.C:
// Process any pending GC requests
select {
case req := <-agc.gcQueue:
atomic.StoreInt32(&agc.gcRunning, 1)
agc.gcFunc(agc.vfs, req.bytesNeeded)
atomic.StoreInt32(&agc.gcRunning, 0)
default:
// No pending requests
}
}
}
}
// preemptiveGC runs background GC to keep cache utilization below threshold
func (agc *AsyncGCFS) preemptiveGC() {
defer agc.wg.Done()
ticker := time.NewTicker(5 * time.Second) // Check every 5 seconds
defer ticker.Stop()
for {
select {
case <-agc.ctx.Done():
return
case <-ticker.C:
currentSize := agc.vfs.Size()
capacity := agc.vfs.Capacity()
currentUtilization := float64(currentSize) / float64(capacity)
// Check if we're above the async threshold
if currentUtilization > agc.asyncThreshold {
// Calculate how much to free to get back to async threshold
targetSize := int64(float64(capacity) * agc.asyncThreshold)
if currentSize > targetSize {
overage := currentSize - targetSize
select {
case agc.gcQueue <- gcRequest{bytesNeeded: uint(overage), priority: 0}:
default:
// Queue full, skip this round
}
}
}
}
}
}
// Stop stops the async GC workers
func (agc *AsyncGCFS) Stop() {
agc.cancel()
agc.wg.Wait()
}
// IsGCRunning returns true if GC is currently running
func (agc *AsyncGCFS) IsGCRunning() bool {
return atomic.LoadInt32(&agc.gcRunning) == 1
}
// ForceGC forces immediate garbage collection to free the specified number of bytes
func (agc *AsyncGCFS) ForceGC(bytesNeeded uint) {
agc.gcFunc(agc.vfs, bytesNeeded)
}

130
vfs/memory/dynamic.go Normal file
View File

@@ -0,0 +1,130 @@
package memory
import (
"s1d3sw1ped/SteamCache2/vfs"
"sync"
"sync/atomic"
"time"
)
// DynamicCacheManager manages cache size adjustments based on system memory usage
type DynamicCacheManager struct {
originalCacheSize uint64
currentCacheSize uint64
memoryMonitor *MemoryMonitor
cache vfs.VFS
adjustmentInterval time.Duration
lastAdjustment time.Time
mu sync.RWMutex
adjustmentCount int64
isAdjusting int32
}
// NewDynamicCacheManager creates a new dynamic cache manager
func NewDynamicCacheManager(cache vfs.VFS, originalSize uint64, memoryMonitor *MemoryMonitor) *DynamicCacheManager {
return &DynamicCacheManager{
originalCacheSize: originalSize,
currentCacheSize: originalSize,
memoryMonitor: memoryMonitor,
cache: cache,
adjustmentInterval: 30 * time.Second, // Adjust every 30 seconds
}
}
// Start begins the dynamic cache size adjustment process
func (dcm *DynamicCacheManager) Start() {
go dcm.adjustmentLoop()
}
// GetCurrentCacheSize returns the current cache size
func (dcm *DynamicCacheManager) GetCurrentCacheSize() uint64 {
dcm.mu.RLock()
defer dcm.mu.RUnlock()
return atomic.LoadUint64(&dcm.currentCacheSize)
}
// GetOriginalCacheSize returns the original cache size
func (dcm *DynamicCacheManager) GetOriginalCacheSize() uint64 {
dcm.mu.RLock()
defer dcm.mu.RUnlock()
return dcm.originalCacheSize
}
// GetAdjustmentCount returns the number of adjustments made
func (dcm *DynamicCacheManager) GetAdjustmentCount() int64 {
return atomic.LoadInt64(&dcm.adjustmentCount)
}
// adjustmentLoop runs the cache size adjustment loop
func (dcm *DynamicCacheManager) adjustmentLoop() {
ticker := time.NewTicker(dcm.adjustmentInterval)
defer ticker.Stop()
for range ticker.C {
dcm.performAdjustment()
}
}
// performAdjustment performs a cache size adjustment if needed
func (dcm *DynamicCacheManager) performAdjustment() {
// Prevent concurrent adjustments
if !atomic.CompareAndSwapInt32(&dcm.isAdjusting, 0, 1) {
return
}
defer atomic.StoreInt32(&dcm.isAdjusting, 0)
// Check if enough time has passed since last adjustment
if time.Since(dcm.lastAdjustment) < dcm.adjustmentInterval {
return
}
// Get recommended cache size
recommendedSize := dcm.memoryMonitor.GetRecommendedCacheSize(dcm.originalCacheSize)
currentSize := atomic.LoadUint64(&dcm.currentCacheSize)
// Only adjust if there's a significant difference (more than 5%)
sizeDiff := float64(recommendedSize) / float64(currentSize)
if sizeDiff < 0.95 || sizeDiff > 1.05 {
dcm.adjustCacheSize(recommendedSize)
dcm.lastAdjustment = time.Now()
atomic.AddInt64(&dcm.adjustmentCount, 1)
}
}
// adjustCacheSize adjusts the cache size to the recommended size
func (dcm *DynamicCacheManager) adjustCacheSize(newSize uint64) {
dcm.mu.Lock()
defer dcm.mu.Unlock()
oldSize := atomic.LoadUint64(&dcm.currentCacheSize)
atomic.StoreUint64(&dcm.currentCacheSize, newSize)
// If we're reducing the cache size, trigger GC to free up memory
if newSize < oldSize {
// Calculate how much to free
bytesToFree := oldSize - newSize
// Trigger GC on the cache to free up the excess memory
// This is a simplified approach - in practice, you'd want to integrate
// with the actual GC system to free the right amount
if gcCache, ok := dcm.cache.(interface{ ForceGC(uint) }); ok {
gcCache.ForceGC(uint(bytesToFree))
}
}
}
// GetStats returns statistics about the dynamic cache manager
func (dcm *DynamicCacheManager) GetStats() map[string]interface{} {
dcm.mu.RLock()
defer dcm.mu.RUnlock()
return map[string]interface{}{
"original_cache_size": dcm.originalCacheSize,
"current_cache_size": atomic.LoadUint64(&dcm.currentCacheSize),
"adjustment_count": atomic.LoadInt64(&dcm.adjustmentCount),
"last_adjustment": dcm.lastAdjustment,
"memory_utilization": dcm.memoryMonitor.GetMemoryUtilization(),
"target_memory_usage": dcm.memoryMonitor.GetTargetMemoryUsage(),
"current_memory_usage": dcm.memoryMonitor.GetCurrentMemoryUsage(),
}
}

View File

@@ -5,7 +5,7 @@ import (
"bytes"
"container/list"
"io"
"s1d3sw1ped/SteamCache2/vfs"
"s1d3sw1ped/SteamCache2/vfs/types"
"s1d3sw1ped/SteamCache2/vfs/vfserror"
"sort"
"strings"
@@ -13,19 +13,43 @@ import (
"time"
)
// VFS defines the interface for virtual file systems
type VFS interface {
// Create creates a new file at the given key
Create(key string, size int64) (io.WriteCloser, error)
// Open opens the file at the given key for reading
Open(key string) (io.ReadCloser, error)
// Delete removes the file at the given key
Delete(key string) error
// Stat returns information about the file at the given key
Stat(key string) (*types.FileInfo, error)
// Name returns the name of this VFS
Name() string
// Size returns the current size of the VFS
Size() int64
// Capacity returns the maximum capacity of the VFS
Capacity() int64
}
// Ensure MemoryFS implements VFS.
var _ vfs.VFS = (*MemoryFS)(nil)
var _ VFS = (*MemoryFS)(nil)
// MemoryFS is an in-memory virtual file system
type MemoryFS struct {
data map[string]*bytes.Buffer
info map[string]*vfs.FileInfo
info map[string]*types.FileInfo
capacity int64
size int64
mu sync.RWMutex
keyLocks []sync.Map // Sharded lock pools for better concurrency
LRU *lruList
timeUpdater *vfs.BatchedTimeUpdate // Batched time updates for better performance
timeUpdater *types.BatchedTimeUpdate // Batched time updates for better performance
}
// Number of lock shards for reducing contention
@@ -44,25 +68,25 @@ func newLruList() *lruList {
}
}
func (l *lruList) Add(key string, fi *vfs.FileInfo) {
func (l *lruList) Add(key string, fi *types.FileInfo) {
elem := l.list.PushFront(fi)
l.elem[key] = elem
}
func (l *lruList) MoveToFront(key string, timeUpdater *vfs.BatchedTimeUpdate) {
func (l *lruList) MoveToFront(key string, timeUpdater *types.BatchedTimeUpdate) {
if elem, exists := l.elem[key]; exists {
l.list.MoveToFront(elem)
// Update the FileInfo in the element with new access time
if fi := elem.Value.(*vfs.FileInfo); fi != nil {
if fi := elem.Value.(*types.FileInfo); fi != nil {
fi.UpdateAccessBatched(timeUpdater)
}
}
}
func (l *lruList) Remove(key string) *vfs.FileInfo {
func (l *lruList) Remove(key string) *types.FileInfo {
if elem, exists := l.elem[key]; exists {
delete(l.elem, key)
if fi := l.list.Remove(elem).(*vfs.FileInfo); fi != nil {
if fi := l.list.Remove(elem).(*types.FileInfo); fi != nil {
return fi
}
}
@@ -84,12 +108,12 @@ func New(capacity int64) *MemoryFS {
return &MemoryFS{
data: make(map[string]*bytes.Buffer),
info: make(map[string]*vfs.FileInfo),
info: make(map[string]*types.FileInfo),
capacity: capacity,
size: 0,
keyLocks: keyLocks,
LRU: newLruList(),
timeUpdater: vfs.NewBatchedTimeUpdate(100 * time.Millisecond), // Update time every 100ms
timeUpdater: types.NewBatchedTimeUpdate(100 * time.Millisecond), // Update time every 100ms
}
}
@@ -110,6 +134,35 @@ func (m *MemoryFS) Capacity() int64 {
return m.capacity
}
// GetFragmentationStats returns memory fragmentation statistics
func (m *MemoryFS) GetFragmentationStats() map[string]interface{} {
m.mu.RLock()
defer m.mu.RUnlock()
var totalCapacity int64
var totalUsed int64
var bufferCount int
for _, buffer := range m.data {
totalCapacity += int64(buffer.Cap())
totalUsed += int64(buffer.Len())
bufferCount++
}
fragmentationRatio := float64(0)
if totalCapacity > 0 {
fragmentationRatio = float64(totalCapacity-totalUsed) / float64(totalCapacity)
}
return map[string]interface{}{
"buffer_count": bufferCount,
"total_capacity": totalCapacity,
"total_used": totalUsed,
"fragmentation_ratio": fragmentationRatio,
"average_buffer_size": float64(totalUsed) / float64(bufferCount),
}
}
// getShardIndex returns the shard index for a given key
func getShardIndex(key string) int {
// Use FNV-1a hash for good distribution
@@ -159,7 +212,7 @@ func (m *MemoryFS) Create(key string, size int64) (io.WriteCloser, error) {
buffer := &bytes.Buffer{}
m.data[key] = buffer
fi := vfs.NewFileInfo(key, size)
fi := types.NewFileInfo(key, size)
m.info[key] = fi
m.LRU.Add(key, fi)
// Initialize access time with current time
@@ -230,23 +283,39 @@ func (m *MemoryFS) Open(key string) (io.ReadCloser, error) {
return nil, vfserror.ErrNotFound
}
// Create a copy of the buffer for reading
data := make([]byte, buffer.Len())
copy(data, buffer.Bytes())
// Use zero-copy approach - return reader that reads directly from buffer
m.mu.Unlock()
return &memoryReadCloser{
reader: bytes.NewReader(data),
buffer: buffer,
offset: 0,
}, nil
}
// memoryReadCloser implements io.ReadCloser for memory files
// memoryReadCloser implements io.ReadCloser for memory files with zero-copy optimization
type memoryReadCloser struct {
reader *bytes.Reader
buffer *bytes.Buffer
offset int64
}
func (mrc *memoryReadCloser) Read(p []byte) (n int, err error) {
return mrc.reader.Read(p)
if mrc.offset >= int64(mrc.buffer.Len()) {
return 0, io.EOF
}
// Zero-copy read directly from buffer
available := mrc.buffer.Len() - int(mrc.offset)
toRead := len(p)
if toRead > available {
toRead = available
}
// Read directly from buffer without copying
data := mrc.buffer.Bytes()
copy(p, data[mrc.offset:mrc.offset+int64(toRead)])
mrc.offset += int64(toRead)
return toRead, nil
}
func (mrc *memoryReadCloser) Close() error {
@@ -286,7 +355,7 @@ func (m *MemoryFS) Delete(key string) error {
}
// Stat returns file information
func (m *MemoryFS) Stat(key string) (*vfs.FileInfo, error) {
func (m *MemoryFS) Stat(key string) (*types.FileInfo, error) {
if key == "" {
return nil, vfserror.ErrInvalidKey
}
@@ -327,7 +396,7 @@ func (m *MemoryFS) EvictLRU(bytesNeeded uint) uint {
break
}
fi := elem.Value.(*vfs.FileInfo)
fi := elem.Value.(*types.FileInfo)
key := fi.Key
// Remove from LRU
@@ -355,7 +424,7 @@ func (m *MemoryFS) EvictBySize(bytesNeeded uint, ascending bool) uint {
defer m.mu.Unlock()
var evicted uint
var candidates []*vfs.FileInfo
var candidates []*types.FileInfo
// Collect all files
for _, fi := range m.info {
@@ -403,7 +472,7 @@ func (m *MemoryFS) EvictFIFO(bytesNeeded uint) uint {
defer m.mu.Unlock()
var evicted uint
var candidates []*vfs.FileInfo
var candidates []*types.FileInfo
// Collect all files
for _, fi := range m.info {

153
vfs/memory/monitor.go Normal file
View File

@@ -0,0 +1,153 @@
package memory
import (
"runtime"
"sync"
"sync/atomic"
"time"
)
// MemoryMonitor tracks system memory usage and provides dynamic sizing recommendations
type MemoryMonitor struct {
targetMemoryUsage uint64 // Target total memory usage in bytes
currentMemoryUsage uint64 // Current total memory usage in bytes
monitoringInterval time.Duration
adjustmentThreshold float64 // Threshold for cache size adjustments (e.g., 0.1 = 10%)
mu sync.RWMutex
ctx chan struct{}
stopChan chan struct{}
isMonitoring int32
}
// NewMemoryMonitor creates a new memory monitor
func NewMemoryMonitor(targetMemoryUsage uint64, monitoringInterval time.Duration, adjustmentThreshold float64) *MemoryMonitor {
return &MemoryMonitor{
targetMemoryUsage: targetMemoryUsage,
monitoringInterval: monitoringInterval,
adjustmentThreshold: adjustmentThreshold,
ctx: make(chan struct{}),
stopChan: make(chan struct{}),
}
}
// Start begins monitoring memory usage
func (mm *MemoryMonitor) Start() {
if atomic.CompareAndSwapInt32(&mm.isMonitoring, 0, 1) {
go mm.monitor()
}
}
// Stop stops monitoring memory usage
func (mm *MemoryMonitor) Stop() {
if atomic.CompareAndSwapInt32(&mm.isMonitoring, 1, 0) {
close(mm.stopChan)
}
}
// GetCurrentMemoryUsage returns the current total memory usage
func (mm *MemoryMonitor) GetCurrentMemoryUsage() uint64 {
mm.mu.RLock()
defer mm.mu.RUnlock()
return atomic.LoadUint64(&mm.currentMemoryUsage)
}
// GetTargetMemoryUsage returns the target memory usage
func (mm *MemoryMonitor) GetTargetMemoryUsage() uint64 {
mm.mu.RLock()
defer mm.mu.RUnlock()
return mm.targetMemoryUsage
}
// GetMemoryUtilization returns the current memory utilization as a percentage
func (mm *MemoryMonitor) GetMemoryUtilization() float64 {
mm.mu.RLock()
defer mm.mu.RUnlock()
current := atomic.LoadUint64(&mm.currentMemoryUsage)
return float64(current) / float64(mm.targetMemoryUsage)
}
// GetRecommendedCacheSize calculates the recommended cache size based on current memory usage
func (mm *MemoryMonitor) GetRecommendedCacheSize(originalCacheSize uint64) uint64 {
mm.mu.RLock()
defer mm.mu.RUnlock()
current := atomic.LoadUint64(&mm.currentMemoryUsage)
target := mm.targetMemoryUsage
// If we're under target, we can use the full cache size
if current <= target {
return originalCacheSize
}
// Calculate how much we're over target
overage := current - target
// If overage is significant, reduce cache size
if overage > uint64(float64(target)*mm.adjustmentThreshold) {
// Reduce cache size by the overage amount, but don't go below 10% of original
minCacheSize := uint64(float64(originalCacheSize) * 0.1)
recommendedSize := originalCacheSize - overage
if recommendedSize < minCacheSize {
recommendedSize = minCacheSize
}
return recommendedSize
}
return originalCacheSize
}
// monitor runs the memory monitoring loop
func (mm *MemoryMonitor) monitor() {
ticker := time.NewTicker(mm.monitoringInterval)
defer ticker.Stop()
for {
select {
case <-mm.stopChan:
return
case <-ticker.C:
mm.updateMemoryUsage()
}
}
}
// updateMemoryUsage updates the current memory usage
func (mm *MemoryMonitor) updateMemoryUsage() {
var m runtime.MemStats
runtime.ReadMemStats(&m)
// Use Alloc (currently allocated memory) as our metric
atomic.StoreUint64(&mm.currentMemoryUsage, m.Alloc)
}
// SetTargetMemoryUsage updates the target memory usage
func (mm *MemoryMonitor) SetTargetMemoryUsage(target uint64) {
mm.mu.Lock()
defer mm.mu.Unlock()
mm.targetMemoryUsage = target
}
// GetMemoryStats returns detailed memory statistics
func (mm *MemoryMonitor) GetMemoryStats() map[string]interface{} {
var m runtime.MemStats
runtime.ReadMemStats(&m)
mm.mu.RLock()
defer mm.mu.RUnlock()
return map[string]interface{}{
"current_usage": atomic.LoadUint64(&mm.currentMemoryUsage),
"target_usage": mm.targetMemoryUsage,
"utilization": mm.GetMemoryUtilization(),
"heap_alloc": m.HeapAlloc,
"heap_sys": m.HeapSys,
"heap_idle": m.HeapIdle,
"heap_inuse": m.HeapInuse,
"stack_inuse": m.StackInuse,
"stack_sys": m.StackSys,
"gc_cycles": m.NumGC,
"gc_pause_total": m.PauseTotalNs,
}
}

View File

@@ -0,0 +1,367 @@
package predictive
import (
"context"
"sync"
"sync/atomic"
"time"
)
// PredictiveCacheManager implements predictive caching strategies
type PredictiveCacheManager struct {
accessPredictor *AccessPredictor
cacheWarmer *CacheWarmer
prefetchQueue chan PrefetchRequest
ctx context.Context
cancel context.CancelFunc
wg sync.WaitGroup
stats *PredictiveStats
}
// PrefetchRequest represents a request to prefetch content
type PrefetchRequest struct {
Key string
Priority int
Reason string
RequestedAt time.Time
}
// PredictiveStats tracks predictive caching statistics
type PredictiveStats struct {
PrefetchHits int64
PrefetchMisses int64
PrefetchRequests int64
CacheWarmHits int64
CacheWarmMisses int64
mu sync.RWMutex
}
// AccessPredictor predicts which files are likely to be accessed next
type AccessPredictor struct {
accessHistory map[string]*AccessSequence
patterns map[string][]string // Key -> likely next keys
mu sync.RWMutex
}
// AccessSequence tracks access sequences for prediction
type AccessSequence struct {
Key string
NextKeys []string
Frequency map[string]int64
LastSeen time.Time
mu sync.RWMutex
}
// CacheWarmer preloads popular content into cache
type CacheWarmer struct {
popularContent map[string]*PopularContent
warmerQueue chan WarmRequest
mu sync.RWMutex
}
// PopularContent tracks popular content for warming
type PopularContent struct {
Key string
AccessCount int64
LastAccess time.Time
Size int64
Priority int
}
// WarmRequest represents a cache warming request
type WarmRequest struct {
Key string
Priority int
Reason string
}
// NewPredictiveCacheManager creates a new predictive cache manager
func NewPredictiveCacheManager() *PredictiveCacheManager {
ctx, cancel := context.WithCancel(context.Background())
pcm := &PredictiveCacheManager{
accessPredictor: NewAccessPredictor(),
cacheWarmer: NewCacheWarmer(),
prefetchQueue: make(chan PrefetchRequest, 1000),
ctx: ctx,
cancel: cancel,
stats: &PredictiveStats{},
}
// Start background workers
pcm.wg.Add(1)
go pcm.prefetchWorker()
pcm.wg.Add(1)
go pcm.analysisWorker()
return pcm
}
// NewAccessPredictor creates a new access predictor
func NewAccessPredictor() *AccessPredictor {
return &AccessPredictor{
accessHistory: make(map[string]*AccessSequence),
patterns: make(map[string][]string),
}
}
// NewCacheWarmer creates a new cache warmer
func NewCacheWarmer() *CacheWarmer {
return &CacheWarmer{
popularContent: make(map[string]*PopularContent),
warmerQueue: make(chan WarmRequest, 100),
}
}
// RecordAccess records a file access for prediction analysis (lightweight version)
func (pcm *PredictiveCacheManager) RecordAccess(key string, previousKey string, size int64) {
// Only record if we have a previous key to avoid overhead
if previousKey != "" {
pcm.accessPredictor.RecordSequence(previousKey, key)
}
// Lightweight popular content tracking - only for large files
if size > 1024*1024 { // Only track files > 1MB
pcm.cacheWarmer.RecordAccess(key, size)
}
// Skip expensive prediction checks on every access
// Only check occasionally to reduce overhead
}
// PredictNextAccess predicts the next likely file to be accessed
func (pcm *PredictiveCacheManager) PredictNextAccess(currentKey string) []string {
return pcm.accessPredictor.PredictNext(currentKey)
}
// RequestPrefetch requests prefetching of predicted content
func (pcm *PredictiveCacheManager) RequestPrefetch(key string, priority int, reason string) {
select {
case pcm.prefetchQueue <- PrefetchRequest{
Key: key,
Priority: priority,
Reason: reason,
RequestedAt: time.Now(),
}:
atomic.AddInt64(&pcm.stats.PrefetchRequests, 1)
default:
// Queue full, skip prefetch
}
}
// RecordSequence records an access sequence for prediction
func (ap *AccessPredictor) RecordSequence(previousKey, currentKey string) {
if previousKey == "" || currentKey == "" {
return
}
ap.mu.Lock()
defer ap.mu.Unlock()
seq, exists := ap.accessHistory[previousKey]
if !exists {
seq = &AccessSequence{
Key: previousKey,
NextKeys: []string{},
Frequency: make(map[string]int64),
LastSeen: time.Now(),
}
ap.accessHistory[previousKey] = seq
}
seq.mu.Lock()
seq.Frequency[currentKey]++
seq.LastSeen = time.Now()
// Update next keys list (keep top 5)
nextKeys := make([]string, 0, 5)
for key, _ := range seq.Frequency {
nextKeys = append(nextKeys, key)
if len(nextKeys) >= 5 {
break
}
}
seq.NextKeys = nextKeys
seq.mu.Unlock()
}
// PredictNext predicts the next likely files to be accessed
func (ap *AccessPredictor) PredictNext(currentKey string) []string {
ap.mu.RLock()
defer ap.mu.RUnlock()
seq, exists := ap.accessHistory[currentKey]
if !exists {
return []string{}
}
seq.mu.RLock()
defer seq.mu.RUnlock()
// Return top predicted keys
predictions := make([]string, len(seq.NextKeys))
copy(predictions, seq.NextKeys)
return predictions
}
// IsPredictedAccess checks if an access was predicted
func (ap *AccessPredictor) IsPredictedAccess(key string) bool {
ap.mu.RLock()
defer ap.mu.RUnlock()
// Check if this key appears in any prediction lists
for _, seq := range ap.accessHistory {
seq.mu.RLock()
for _, predictedKey := range seq.NextKeys {
if predictedKey == key {
seq.mu.RUnlock()
return true
}
}
seq.mu.RUnlock()
}
return false
}
// RecordAccess records a file access for cache warming (lightweight version)
func (cw *CacheWarmer) RecordAccess(key string, size int64) {
// Use read lock first for better performance
cw.mu.RLock()
content, exists := cw.popularContent[key]
cw.mu.RUnlock()
if !exists {
// Only acquire write lock when creating new entry
cw.mu.Lock()
// Double-check after acquiring write lock
if content, exists = cw.popularContent[key]; !exists {
content = &PopularContent{
Key: key,
AccessCount: 1,
LastAccess: time.Now(),
Size: size,
Priority: 1,
}
cw.popularContent[key] = content
}
cw.mu.Unlock()
} else {
// Lightweight update - just increment counter
content.AccessCount++
content.LastAccess = time.Now()
// Only update priority occasionally to reduce overhead
if content.AccessCount%5 == 0 {
if content.AccessCount > 10 {
content.Priority = 3
} else if content.AccessCount > 5 {
content.Priority = 2
}
}
}
}
// GetPopularContent returns the most popular content for warming
func (cw *CacheWarmer) GetPopularContent(limit int) []*PopularContent {
cw.mu.RLock()
defer cw.mu.RUnlock()
// Sort by access count and return top items
popular := make([]*PopularContent, 0, len(cw.popularContent))
for _, content := range cw.popularContent {
popular = append(popular, content)
}
// Simple sort by access count (in production, use proper sorting)
// For now, just return the first 'limit' items
if len(popular) > limit {
popular = popular[:limit]
}
return popular
}
// prefetchWorker processes prefetch requests
func (pcm *PredictiveCacheManager) prefetchWorker() {
defer pcm.wg.Done()
for {
select {
case <-pcm.ctx.Done():
return
case req := <-pcm.prefetchQueue:
// Process prefetch request
pcm.processPrefetchRequest(req)
}
}
}
// analysisWorker performs periodic analysis and cache warming
func (pcm *PredictiveCacheManager) analysisWorker() {
defer pcm.wg.Done()
ticker := time.NewTicker(30 * time.Second) // Analyze every 30 seconds
defer ticker.Stop()
for {
select {
case <-pcm.ctx.Done():
return
case <-ticker.C:
pcm.performAnalysis()
}
}
}
// processPrefetchRequest processes a prefetch request
func (pcm *PredictiveCacheManager) processPrefetchRequest(req PrefetchRequest) {
// In a real implementation, this would:
// 1. Check if content is already cached
// 2. If not, fetch and cache it
// 3. Update statistics
// For now, just log the prefetch request
// In production, integrate with the actual cache system
}
// performAnalysis performs periodic analysis and cache warming
func (pcm *PredictiveCacheManager) performAnalysis() {
// Get popular content for warming
popular := pcm.cacheWarmer.GetPopularContent(10)
// Request warming for popular content
for _, content := range popular {
if content.AccessCount > 5 { // Only warm frequently accessed content
select {
case pcm.cacheWarmer.warmerQueue <- WarmRequest{
Key: content.Key,
Priority: content.Priority,
Reason: "popular_content",
}:
default:
// Queue full, skip
}
}
}
}
// GetStats returns predictive caching statistics
func (pcm *PredictiveCacheManager) GetStats() *PredictiveStats {
pcm.stats.mu.RLock()
defer pcm.stats.mu.RUnlock()
return &PredictiveStats{
PrefetchHits: atomic.LoadInt64(&pcm.stats.PrefetchHits),
PrefetchMisses: atomic.LoadInt64(&pcm.stats.PrefetchMisses),
PrefetchRequests: atomic.LoadInt64(&pcm.stats.PrefetchRequests),
CacheWarmHits: atomic.LoadInt64(&pcm.stats.CacheWarmHits),
CacheWarmMisses: atomic.LoadInt64(&pcm.stats.CacheWarmMisses),
}
}
// Stop stops the predictive cache manager
func (pcm *PredictiveCacheManager) Stop() {
pcm.cancel()
pcm.wg.Wait()
}

87
vfs/types/types.go Normal file
View File

@@ -0,0 +1,87 @@
// vfs/types/types.go
package types
import (
"os"
"time"
)
// FileInfo contains metadata about a cached file
type FileInfo struct {
Key string `json:"key"`
Size int64 `json:"size"`
ATime time.Time `json:"atime"` // Last access time
CTime time.Time `json:"ctime"` // Creation time
AccessCount int `json:"access_count"`
}
// NewFileInfo creates a new FileInfo with the given key and current timestamp
func NewFileInfo(key string, size int64) *FileInfo {
now := time.Now()
return &FileInfo{
Key: key,
Size: size,
ATime: now,
CTime: now,
AccessCount: 1,
}
}
// NewFileInfoFromOS creates a FileInfo from os.FileInfo
func NewFileInfoFromOS(info os.FileInfo, key string) *FileInfo {
return &FileInfo{
Key: key,
Size: info.Size(),
ATime: time.Now(), // We don't have access time from os.FileInfo
CTime: info.ModTime(),
AccessCount: 1,
}
}
// UpdateAccess updates the access time and increments the access count
func (fi *FileInfo) UpdateAccess() {
fi.ATime = time.Now()
fi.AccessCount++
}
// BatchedTimeUpdate provides a way to batch time updates for better performance
type BatchedTimeUpdate struct {
currentTime time.Time
lastUpdate time.Time
updateInterval time.Duration
}
// NewBatchedTimeUpdate creates a new batched time updater
func NewBatchedTimeUpdate(interval time.Duration) *BatchedTimeUpdate {
now := time.Now()
return &BatchedTimeUpdate{
currentTime: now,
lastUpdate: now,
updateInterval: interval,
}
}
// GetTime returns the current cached time, updating it if necessary
func (btu *BatchedTimeUpdate) GetTime() time.Time {
now := time.Now()
if now.Sub(btu.lastUpdate) >= btu.updateInterval {
btu.currentTime = now
btu.lastUpdate = now
}
return btu.currentTime
}
// UpdateAccessBatched updates the access time using batched time updates
func (fi *FileInfo) UpdateAccessBatched(btu *BatchedTimeUpdate) {
fi.ATime = btu.GetTime()
fi.AccessCount++
}
// GetTimeDecayedScore calculates a score based on access time and frequency
// More recent and frequent accesses get higher scores
func (fi *FileInfo) GetTimeDecayedScore() float64 {
timeSinceAccess := time.Since(fi.ATime).Hours()
decayFactor := 1.0 / (1.0 + timeSinceAccess/24.0) // Decay over days
frequencyBonus := float64(fi.AccessCount) * 0.1
return decayFactor + frequencyBonus
}

View File

@@ -3,8 +3,7 @@ package vfs
import (
"io"
"os"
"time"
"s1d3sw1ped/SteamCache2/vfs/types"
)
// VFS defines the interface for virtual file systems
@@ -19,7 +18,7 @@ type VFS interface {
Delete(key string) error
// Stat returns information about the file at the given key
Stat(key string) (*FileInfo, error)
Stat(key string) (*types.FileInfo, error)
// Name returns the name of this VFS
Name() string
@@ -31,82 +30,17 @@ type VFS interface {
Capacity() int64
}
// FileInfo contains metadata about a cached file
type FileInfo struct {
Key string `json:"key"`
Size int64 `json:"size"`
ATime time.Time `json:"atime"` // Last access time
CTime time.Time `json:"ctime"` // Creation time
AccessCount int `json:"access_count"`
}
// FileInfo is an alias for types.FileInfo for backward compatibility
type FileInfo = types.FileInfo
// NewFileInfo creates a new FileInfo with the given key and current timestamp
func NewFileInfo(key string, size int64) *FileInfo {
now := time.Now()
return &FileInfo{
Key: key,
Size: size,
ATime: now,
CTime: now,
AccessCount: 1,
}
}
// NewFileInfo is an alias for types.NewFileInfo for backward compatibility
var NewFileInfo = types.NewFileInfo
// NewFileInfoFromOS creates a FileInfo from os.FileInfo
func NewFileInfoFromOS(info os.FileInfo, key string) *FileInfo {
return &FileInfo{
Key: key,
Size: info.Size(),
ATime: time.Now(), // We don't have access time from os.FileInfo
CTime: info.ModTime(),
AccessCount: 1,
}
}
// NewFileInfoFromOS is an alias for types.NewFileInfoFromOS for backward compatibility
var NewFileInfoFromOS = types.NewFileInfoFromOS
// UpdateAccess updates the access time and increments the access count
func (fi *FileInfo) UpdateAccess() {
fi.ATime = time.Now()
fi.AccessCount++
}
// BatchedTimeUpdate is an alias for types.BatchedTimeUpdate for backward compatibility
type BatchedTimeUpdate = types.BatchedTimeUpdate
// BatchedTimeUpdate provides a way to batch time updates for better performance
type BatchedTimeUpdate struct {
currentTime time.Time
lastUpdate time.Time
updateInterval time.Duration
}
// NewBatchedTimeUpdate creates a new batched time updater
func NewBatchedTimeUpdate(interval time.Duration) *BatchedTimeUpdate {
now := time.Now()
return &BatchedTimeUpdate{
currentTime: now,
lastUpdate: now,
updateInterval: interval,
}
}
// GetTime returns the current cached time, updating it if necessary
func (btu *BatchedTimeUpdate) GetTime() time.Time {
now := time.Now()
if now.Sub(btu.lastUpdate) >= btu.updateInterval {
btu.currentTime = now
btu.lastUpdate = now
}
return btu.currentTime
}
// UpdateAccessBatched updates the access time using batched time updates
func (fi *FileInfo) UpdateAccessBatched(btu *BatchedTimeUpdate) {
fi.ATime = btu.GetTime()
fi.AccessCount++
}
// GetTimeDecayedScore calculates a score based on access time and frequency
// More recent and frequent accesses get higher scores
func (fi *FileInfo) GetTimeDecayedScore() float64 {
timeSinceAccess := time.Since(fi.ATime).Hours()
decayFactor := 1.0 / (1.0 + timeSinceAccess/24.0) // Decay over days
frequencyBonus := float64(fi.AccessCount) * 0.1
return decayFactor + frequencyBonus
}
// NewBatchedTimeUpdate is an alias for types.NewBatchedTimeUpdate for backward compatibility
var NewBatchedTimeUpdate = types.NewBatchedTimeUpdate

300
vfs/warming/warming.go Normal file
View File

@@ -0,0 +1,300 @@
package warming
import (
"context"
"s1d3sw1ped/SteamCache2/vfs"
"sync"
"sync/atomic"
"time"
)
// CacheWarmer implements intelligent cache warming strategies
type CacheWarmer struct {
vfs vfs.VFS
warmingQueue chan WarmRequest
activeWarmers map[string]*ActiveWarmer
stats *WarmingStats
ctx context.Context
cancel context.CancelFunc
wg sync.WaitGroup
mu sync.RWMutex
maxConcurrent int
warmingEnabled bool
}
// WarmRequest represents a cache warming request
type WarmRequest struct {
Key string
Priority int
Reason string
Size int64
RequestedAt time.Time
Source string // Where the warming request came from
}
// ActiveWarmer tracks an active warming operation
type ActiveWarmer struct {
Key string
StartTime time.Time
Priority int
Reason string
mu sync.RWMutex
}
// WarmingStats tracks cache warming statistics
type WarmingStats struct {
WarmRequests int64
WarmSuccesses int64
WarmFailures int64
WarmBytes int64
WarmDuration time.Duration
ActiveWarmers int64
mu sync.RWMutex
}
// WarmingStrategy defines different warming strategies
type WarmingStrategy int
const (
StrategyImmediate WarmingStrategy = iota
StrategyBackground
StrategyScheduled
StrategyPredictive
)
// NewCacheWarmer creates a new cache warmer
func NewCacheWarmer(vfs vfs.VFS, maxConcurrent int) *CacheWarmer {
ctx, cancel := context.WithCancel(context.Background())
cw := &CacheWarmer{
vfs: vfs,
warmingQueue: make(chan WarmRequest, 1000),
activeWarmers: make(map[string]*ActiveWarmer),
stats: &WarmingStats{},
ctx: ctx,
cancel: cancel,
maxConcurrent: maxConcurrent,
warmingEnabled: true,
}
// Start warming workers
for i := 0; i < maxConcurrent; i++ {
cw.wg.Add(1)
go cw.warmingWorker(i)
}
// Start cleanup worker
cw.wg.Add(1)
go cw.cleanupWorker()
return cw
}
// RequestWarming requests warming of content
func (cw *CacheWarmer) RequestWarming(key string, priority int, reason string, size int64, source string) {
if !cw.warmingEnabled {
return
}
// Check if already warming
cw.mu.RLock()
if _, exists := cw.activeWarmers[key]; exists {
cw.mu.RUnlock()
return // Already warming
}
cw.mu.RUnlock()
// Check if already cached
if _, err := cw.vfs.Stat(key); err == nil {
return // Already cached
}
select {
case cw.warmingQueue <- WarmRequest{
Key: key,
Priority: priority,
Reason: reason,
Size: size,
RequestedAt: time.Now(),
Source: source,
}:
atomic.AddInt64(&cw.stats.WarmRequests, 1)
default:
// Queue full, skip warming
}
}
// warmingWorker processes warming requests
func (cw *CacheWarmer) warmingWorker(workerID int) {
defer cw.wg.Done()
for {
select {
case <-cw.ctx.Done():
return
case req := <-cw.warmingQueue:
cw.processWarmingRequest(req, workerID)
}
}
}
// processWarmingRequest processes a warming request
func (cw *CacheWarmer) processWarmingRequest(req WarmRequest, workerID int) {
// Mark as active warmer
cw.mu.Lock()
cw.activeWarmers[req.Key] = &ActiveWarmer{
Key: req.Key,
StartTime: time.Now(),
Priority: req.Priority,
Reason: req.Reason,
}
cw.mu.Unlock()
atomic.AddInt64(&cw.stats.ActiveWarmers, 1)
// Simulate warming process
// In a real implementation, this would:
// 1. Fetch content from upstream
// 2. Store in cache
// 3. Update statistics
startTime := time.Now()
// Simulate warming delay based on priority
warmingDelay := time.Duration(100-req.Priority*10) * time.Millisecond
if warmingDelay < 10*time.Millisecond {
warmingDelay = 10 * time.Millisecond
}
select {
case <-time.After(warmingDelay):
// Warming completed successfully
atomic.AddInt64(&cw.stats.WarmSuccesses, 1)
atomic.AddInt64(&cw.stats.WarmBytes, req.Size)
case <-cw.ctx.Done():
// Context cancelled
atomic.AddInt64(&cw.stats.WarmFailures, 1)
}
duration := time.Since(startTime)
cw.stats.mu.Lock()
cw.stats.WarmDuration += duration
cw.stats.mu.Unlock()
// Remove from active warmers
cw.mu.Lock()
delete(cw.activeWarmers, req.Key)
cw.mu.Unlock()
atomic.AddInt64(&cw.stats.ActiveWarmers, -1)
}
// cleanupWorker cleans up old warming requests
func (cw *CacheWarmer) cleanupWorker() {
defer cw.wg.Done()
ticker := time.NewTicker(1 * time.Minute)
defer ticker.Stop()
for {
select {
case <-cw.ctx.Done():
return
case <-ticker.C:
cw.cleanupOldWarmers()
}
}
}
// cleanupOldWarmers removes old warming requests
func (cw *CacheWarmer) cleanupOldWarmers() {
cw.mu.Lock()
defer cw.mu.Unlock()
now := time.Now()
cutoff := now.Add(-5 * time.Minute) // Remove warmers older than 5 minutes
for key, warmer := range cw.activeWarmers {
warmer.mu.RLock()
if warmer.StartTime.Before(cutoff) {
warmer.mu.RUnlock()
delete(cw.activeWarmers, key)
atomic.AddInt64(&cw.stats.WarmFailures, 1)
} else {
warmer.mu.RUnlock()
}
}
}
// GetActiveWarmers returns currently active warming operations
func (cw *CacheWarmer) GetActiveWarmers() []*ActiveWarmer {
cw.mu.RLock()
defer cw.mu.RUnlock()
warmers := make([]*ActiveWarmer, 0, len(cw.activeWarmers))
for _, warmer := range cw.activeWarmers {
warmers = append(warmers, warmer)
}
return warmers
}
// GetStats returns warming statistics
func (cw *CacheWarmer) GetStats() *WarmingStats {
cw.stats.mu.RLock()
defer cw.stats.mu.RUnlock()
return &WarmingStats{
WarmRequests: atomic.LoadInt64(&cw.stats.WarmRequests),
WarmSuccesses: atomic.LoadInt64(&cw.stats.WarmSuccesses),
WarmFailures: atomic.LoadInt64(&cw.stats.WarmFailures),
WarmBytes: atomic.LoadInt64(&cw.stats.WarmBytes),
WarmDuration: cw.stats.WarmDuration,
ActiveWarmers: atomic.LoadInt64(&cw.stats.ActiveWarmers),
}
}
// SetWarmingEnabled enables or disables cache warming
func (cw *CacheWarmer) SetWarmingEnabled(enabled bool) {
cw.mu.Lock()
defer cw.mu.Unlock()
cw.warmingEnabled = enabled
}
// IsWarmingEnabled returns whether warming is enabled
func (cw *CacheWarmer) IsWarmingEnabled() bool {
cw.mu.RLock()
defer cw.mu.RUnlock()
return cw.warmingEnabled
}
// Stop stops the cache warmer
func (cw *CacheWarmer) Stop() {
cw.cancel()
cw.wg.Wait()
}
// WarmPopularContent warms popular content based on access patterns
func (cw *CacheWarmer) WarmPopularContent(popularKeys []string, priority int) {
for _, key := range popularKeys {
cw.RequestWarming(key, priority, "popular_content", 0, "popular_analyzer")
}
}
// WarmPredictedContent warms predicted content
func (cw *CacheWarmer) WarmPredictedContent(predictedKeys []string, priority int) {
for _, key := range predictedKeys {
cw.RequestWarming(key, priority, "predicted_access", 0, "predictor")
}
}
// WarmSequentialContent warms content in sequential order
func (cw *CacheWarmer) WarmSequentialContent(sequentialKeys []string, priority int) {
for i, key := range sequentialKeys {
// Stagger warming requests to avoid overwhelming the system
go func(k string, delay time.Duration) {
time.Sleep(delay)
cw.RequestWarming(k, priority, "sequential_access", 0, "sequential_analyzer")
}(key, time.Duration(i)*100*time.Millisecond)
}
}