Refactor configuration management and enhance build process

- Introduced a YAML-based configuration system, allowing for automatic generation of a default `config.yaml` file.
- Updated the application to load configuration settings from the YAML file, improving flexibility and ease of use.
- Added a Makefile to streamline development tasks, including running the application, testing, and managing dependencies.
- Enhanced `.gitignore` to include build artifacts and configuration files.
- Removed unused Prometheus metrics and related code to simplify the codebase.
- Updated dependencies in `go.mod` and `go.sum` for improved functionality and performance.
This commit is contained in:
2025-09-02 05:01:42 -05:00
parent 6919358eab
commit c197841960
22 changed files with 1526 additions and 2235 deletions

View File

@@ -2,60 +2,8 @@
package gc
import (
"fmt"
"io"
"s1d3sw1ped/SteamCache2/steamcache/logger"
"s1d3sw1ped/SteamCache2/vfs"
"s1d3sw1ped/SteamCache2/vfs/cachestate"
"s1d3sw1ped/SteamCache2/vfs/disk"
"s1d3sw1ped/SteamCache2/vfs/memory"
"s1d3sw1ped/SteamCache2/vfs/vfserror"
"sort"
"sync"
"time"
"github.com/prometheus/client_golang/prometheus"
"github.com/prometheus/client_golang/prometheus/promauto"
)
var (
// ErrInsufficientSpace is returned when there are no files to delete in the VFS.
ErrInsufficientSpace = fmt.Errorf("no files to delete")
)
// Prometheus metrics for adaptive promotion
var (
promotionThresholds = promauto.NewGaugeVec(
prometheus.GaugeOpts{
Name: "promotion_thresholds_bytes",
Help: "Current promotion thresholds in bytes",
},
[]string{"threshold_type"},
)
promotionWindows = promauto.NewGaugeVec(
prometheus.GaugeOpts{
Name: "promotion_windows_seconds",
Help: "Current promotion time windows in seconds",
},
[]string{"window_type"},
)
promotionStats = promauto.NewGaugeVec(
prometheus.GaugeOpts{
Name: "promotion_stats",
Help: "Promotion statistics",
},
[]string{"metric_type"},
)
promotionAdaptations = promauto.NewCounterVec(
prometheus.CounterOpts{
Name: "promotion_adaptations_total",
Help: "Total number of promotion threshold adaptations",
},
[]string{"direction"},
)
)
// GCAlgorithm represents different garbage collection strategies
@@ -70,677 +18,143 @@ const (
Hybrid GCAlgorithm = "hybrid"
)
// LRUGC deletes files in LRU order until enough space is reclaimed.
func LRUGC(vfss vfs.VFS, size uint) error {
logger.Logger.Debug().Uint("target", size).Msg("Attempting to reclaim space using LRU GC")
var reclaimed uint // reclaimed space in bytes
deleted := false
for {
switch fs := vfss.(type) {
case *disk.DiskFS:
fi := fs.LRU.Back()
if fi == nil {
if deleted {
logger.Logger.Debug().Uint("target", size).Uint("achieved", reclaimed).Msg("Reclaimed enough space using LRU GC (at least one file deleted)")
return nil
}
return ErrInsufficientSpace // No files to delete
}
sz := uint(fi.Size())
err := fs.Delete(fi.Name())
if err != nil {
continue // If delete fails, try the next file
}
reclaimed += sz
deleted = true
case *memory.MemoryFS:
fi := fs.LRU.Back()
if fi == nil {
if deleted {
logger.Logger.Debug().Uint("target", size).Uint("achieved", reclaimed).Msg("Reclaimed enough space using LRU GC (at least one file deleted)")
return nil
}
return ErrInsufficientSpace // No files to delete
}
sz := uint(fi.Size())
err := fs.Delete(fi.Name())
if err != nil {
continue // If delete fails, try the next file
}
reclaimed += sz
deleted = true
default:
panic("unreachable: unsupported VFS type for LRU GC") // panic if the VFS is not disk or memory
}
if deleted && (size == 0 || reclaimed >= size) {
logger.Logger.Debug().Uint("target", size).Uint("achieved", reclaimed).Msg("Reclaimed enough space using LRU GC (at least one file deleted)")
return nil // stop if enough space is reclaimed or at least one file deleted for size==0
}
}
// GCFS wraps a VFS with garbage collection capabilities
type GCFS struct {
vfs vfs.VFS
algorithm GCAlgorithm
gcFunc func(vfs.VFS, uint) uint
}
// LFUGC deletes files in LFU (Least Frequently Used) order until enough space is reclaimed.
func LFUGC(vfss vfs.VFS, size uint) error {
logger.Logger.Debug().Uint("target", size).Msg("Attempting to reclaim space using LFU GC")
files := getAllFiles(vfss)
if len(files) == 0 {
return ErrInsufficientSpace
// New creates a new GCFS with the specified algorithm
func New(wrappedVFS vfs.VFS, algorithm GCAlgorithm) *GCFS {
gcfs := &GCFS{
vfs: wrappedVFS,
algorithm: algorithm,
}
sort.Slice(files, func(i, j int) bool {
return files[i].AccessCount < files[j].AccessCount
})
var reclaimed uint
deleted := false
for _, fi := range files {
err := vfss.Delete(fi.Name)
if err != nil {
continue
}
reclaimed += uint(fi.Size)
deleted = true
if deleted && (size == 0 || reclaimed >= size) {
logger.Logger.Debug().Uint("target", size).Uint("achieved", reclaimed).Msg("Reclaimed enough space using LFU GC (at least one file deleted)")
return nil
}
}
if deleted {
logger.Logger.Debug().Uint("target", size).Uint("achieved", reclaimed).Msg("Reclaimed enough space using LFU GC (at least one file deleted)")
return nil
}
return ErrInsufficientSpace
}
// FIFOGC deletes files in FIFO (First In, First Out) order until enough space is reclaimed.
func FIFOGC(vfss vfs.VFS, size uint) error {
logger.Logger.Debug().Uint("target", size).Msg("Attempting to reclaim space using FIFO GC")
files := getAllFiles(vfss)
if len(files) == 0 {
return ErrInsufficientSpace
}
sort.Slice(files, func(i, j int) bool {
return files[i].MTime.Before(files[j].MTime)
})
var reclaimed uint
deleted := false
for _, fi := range files {
err := vfss.Delete(fi.Name)
if err != nil {
continue
}
reclaimed += uint(fi.Size)
deleted = true
if deleted && (size == 0 || reclaimed >= size) {
logger.Logger.Debug().Uint("target", size).Uint("achieved", reclaimed).Msg("Reclaimed enough space using FIFO GC (at least one file deleted)")
return nil
}
}
if deleted {
logger.Logger.Debug().Uint("target", size).Uint("achieved", reclaimed).Msg("Reclaimed enough space using FIFO GC (at least one file deleted)")
return nil
}
return ErrInsufficientSpace
}
// LargestGC deletes the largest files first until enough space is reclaimed.
func LargestGC(vfss vfs.VFS, size uint) error {
logger.Logger.Debug().Uint("target", size).Msg("Attempting to reclaim space using Largest GC")
files := getAllFiles(vfss)
if len(files) == 0 {
return ErrInsufficientSpace
}
sort.Slice(files, func(i, j int) bool {
return files[i].Size > files[j].Size
})
var reclaimed uint
deleted := false
for _, fi := range files {
err := vfss.Delete(fi.Name)
if err != nil {
continue
}
reclaimed += uint(fi.Size)
deleted = true
if deleted && (size == 0 || reclaimed >= size) {
logger.Logger.Debug().Uint("target", size).Uint("achieved", reclaimed).Msg("Reclaimed enough space using Largest GC (at least one file deleted)")
return nil
}
}
if deleted {
logger.Logger.Debug().Uint("target", size).Uint("achieved", reclaimed).Msg("Reclaimed enough space using Largest GC (at least one file deleted)")
return nil
}
return ErrInsufficientSpace
}
// SmallestGC deletes the smallest files first until enough space is reclaimed.
func SmallestGC(vfss vfs.VFS, size uint) error {
logger.Logger.Debug().Uint("target", size).Msg("Attempting to reclaim space using Smallest GC")
files := getAllFiles(vfss)
if len(files) == 0 {
return ErrInsufficientSpace
}
sort.Slice(files, func(i, j int) bool {
return files[i].Size < files[j].Size
})
var reclaimed uint
deleted := false
for _, fi := range files {
err := vfss.Delete(fi.Name)
if err != nil {
continue
}
reclaimed += uint(fi.Size)
deleted = true
if deleted && (size == 0 || reclaimed >= size) {
logger.Logger.Debug().Uint("target", size).Uint("achieved", reclaimed).Msg("Reclaimed enough space using Smallest GC (at least one file deleted)")
return nil
}
}
if deleted {
logger.Logger.Debug().Uint("target", size).Uint("achieved", reclaimed).Msg("Reclaimed enough space using Smallest GC (at least one file deleted)")
return nil
}
return ErrInsufficientSpace
}
// HybridGC combines LRU and size-based eviction with a scoring system.
func HybridGC(vfss vfs.VFS, size uint) error {
logger.Logger.Debug().Uint("target", size).Msg("Attempting to reclaim space using Hybrid GC")
files := getAllFiles(vfss)
if len(files) == 0 {
return ErrInsufficientSpace
}
now := time.Now()
for i := range files {
timeSinceAccess := now.Sub(files[i].ATime).Seconds()
sizeMB := float64(files[i].Size) / (1024 * 1024)
files[i].HybridScore = timeSinceAccess * sizeMB
}
sort.Slice(files, func(i, j int) bool {
return files[i].HybridScore < files[j].HybridScore
})
var reclaimed uint
deleted := false
for _, fi := range files {
err := vfss.Delete(fi.Name)
if err != nil {
continue
}
reclaimed += uint(fi.Size)
deleted = true
if deleted && (size == 0 || reclaimed >= size) {
logger.Logger.Debug().Uint("target", size).Uint("achieved", reclaimed).Msg("Reclaimed enough space using Hybrid GC (at least one file deleted)")
return nil
}
}
if deleted {
logger.Logger.Debug().Uint("target", size).Uint("achieved", reclaimed).Msg("Reclaimed enough space using Hybrid GC (at least one file deleted)")
return nil
}
return ErrInsufficientSpace
}
// fileInfoWithMetadata extends FileInfo with additional metadata for GC algorithms
type fileInfoWithMetadata struct {
Name string
Size int64
MTime time.Time
ATime time.Time
AccessCount int64
HybridScore float64
}
// getAllFiles retrieves all files from the VFS with additional metadata
func getAllFiles(vfss vfs.VFS) []fileInfoWithMetadata {
var files []fileInfoWithMetadata
switch fs := vfss.(type) {
case *disk.DiskFS:
allFiles := fs.StatAll()
for _, fi := range allFiles {
files = append(files, fileInfoWithMetadata{
Name: fi.Name(),
Size: fi.Size(),
MTime: fi.ModTime(),
ATime: fi.AccessTime(),
AccessCount: fi.AccessCount,
})
}
case *memory.MemoryFS:
allFiles := fs.StatAll()
for _, fi := range allFiles {
files = append(files, fileInfoWithMetadata{
Name: fi.Name(),
Size: fi.Size(),
MTime: fi.ModTime(),
ATime: fi.AccessTime(),
AccessCount: fi.AccessCount,
})
}
}
return files
}
// GetGCAlgorithm returns the appropriate GC function based on the algorithm name
func GetGCAlgorithm(algorithm GCAlgorithm) GCHandlerFunc {
switch algorithm {
case LRU:
return LRUGC
gcfs.gcFunc = gcLRU
case LFU:
return LFUGC
gcfs.gcFunc = gcLFU
case FIFO:
return FIFOGC
gcfs.gcFunc = gcFIFO
case Largest:
return LargestGC
gcfs.gcFunc = gcLargest
case Smallest:
return SmallestGC
gcfs.gcFunc = gcSmallest
case Hybrid:
return HybridGC
gcfs.gcFunc = gcHybrid
default:
logger.Logger.Warn().Str("algorithm", string(algorithm)).Msg("Unknown GC algorithm, falling back to LRU")
return LRUGC
// Default to LRU
gcfs.gcFunc = gcLRU
}
return gcfs
}
// GetGCAlgorithm returns the GC function for the given algorithm
func GetGCAlgorithm(algorithm GCAlgorithm) func(vfs.VFS, uint) uint {
switch algorithm {
case LRU:
return gcLRU
case LFU:
return gcLFU
case FIFO:
return gcFIFO
case Largest:
return gcLargest
case Smallest:
return gcSmallest
case Hybrid:
return gcHybrid
default:
return gcLRU
}
}
func PromotionDecider(fi *vfs.FileInfo, cs cachestate.CacheState) bool {
return time.Since(fi.AccessTime()) < time.Second*60 // Put hot files in the fast vfs if equipped
}
// AdaptivePromotionDecider automatically adjusts promotion thresholds based on usage patterns
type AdaptivePromotionDecider struct {
mu sync.RWMutex
// Current thresholds
smallFileThreshold int64 // Size threshold for small files
mediumFileThreshold int64 // Size threshold for medium files
largeFileThreshold int64 // Size threshold for large files
smallFileWindow time.Duration // Time window for small files
mediumFileWindow time.Duration // Time window for medium files
largeFileWindow time.Duration // Time window for large files
// Statistics for adaptation
promotionAttempts int64
promotionSuccesses int64
fastStorageHits int64
fastStorageAccesses int64
lastAdaptation time.Time
// Target metrics
targetHitRate float64 // Target hit rate for fast storage
targetPromotionRate float64 // Target promotion success rate
adaptationInterval time.Duration
}
// NewAdaptivePromotionDecider creates a new adaptive promotion decider
func NewAdaptivePromotionDecider() *AdaptivePromotionDecider {
apd := &AdaptivePromotionDecider{
// Initial thresholds
smallFileThreshold: 10 * 1024 * 1024, // 10MB
mediumFileThreshold: 100 * 1024 * 1024, // 100MB
largeFileThreshold: 500 * 1024 * 1024, // 500MB
smallFileWindow: 10 * time.Minute,
mediumFileWindow: 2 * time.Minute,
largeFileWindow: 30 * time.Second,
// Target metrics
targetHitRate: 0.8, // 80% hit rate
targetPromotionRate: 0.7, // 70% promotion success rate
adaptationInterval: 5 * time.Minute,
// Create wraps the underlying Create method
func (gc *GCFS) Create(key string, size int64) (io.WriteCloser, error) {
// Check if we need to GC before creating
if gc.vfs.Size()+size > gc.vfs.Capacity() {
needed := uint((gc.vfs.Size() + size) - gc.vfs.Capacity())
gc.gcFunc(gc.vfs, needed)
}
// Initialize Prometheus metrics
apd.updatePrometheusMetrics()
return apd
return gc.vfs.Create(key, size)
}
// ShouldPromote determines if a file should be promoted based on adaptive thresholds
func (apd *AdaptivePromotionDecider) ShouldPromote(fi *vfs.FileInfo, cs cachestate.CacheState) bool {
apd.mu.Lock()
defer apd.mu.Unlock()
// Check if it's time to adapt thresholds
if time.Since(apd.lastAdaptation) > apd.adaptationInterval {
apd.adaptThresholds()
}
size := fi.Size()
timeSinceAccess := time.Since(fi.AccessTime())
// Record promotion attempt
apd.promotionAttempts++
var shouldPromote bool
// Small files: Promote if accessed recently
if size < apd.smallFileThreshold {
shouldPromote = timeSinceAccess < apd.smallFileWindow
} else if size < apd.mediumFileThreshold {
// Medium files: Moderate promotion
shouldPromote = timeSinceAccess < apd.mediumFileWindow
} else if size < apd.largeFileThreshold {
// Large files: Conservative promotion
shouldPromote = timeSinceAccess < apd.largeFileWindow
} else {
// Huge files: Don't promote
shouldPromote = false
}
// Record promotion decision
if shouldPromote {
apd.promotionSuccesses++
}
// Update Prometheus metrics periodically (every 10 attempts to avoid overhead)
if apd.promotionAttempts%10 == 0 {
apd.updatePrometheusMetrics()
}
return shouldPromote
// Open wraps the underlying Open method
func (gc *GCFS) Open(key string) (io.ReadCloser, error) {
return gc.vfs.Open(key)
}
// RecordFastStorageAccess records when fast storage is accessed
func (apd *AdaptivePromotionDecider) RecordFastStorageAccess() {
apd.mu.Lock()
defer apd.mu.Unlock()
apd.fastStorageAccesses++
// Update Prometheus metrics periodically
if apd.fastStorageAccesses%10 == 0 {
apd.updatePrometheusMetrics()
}
// Delete wraps the underlying Delete method
func (gc *GCFS) Delete(key string) error {
return gc.vfs.Delete(key)
}
// RecordFastStorageHit records when fast storage has a hit
func (apd *AdaptivePromotionDecider) RecordFastStorageHit() {
apd.mu.Lock()
defer apd.mu.Unlock()
apd.fastStorageHits++
// Update Prometheus metrics periodically
if apd.fastStorageHits%10 == 0 {
apd.updatePrometheusMetrics()
}
// Stat wraps the underlying Stat method
func (gc *GCFS) Stat(key string) (*vfs.FileInfo, error) {
return gc.vfs.Stat(key)
}
// adaptThresholds adjusts thresholds based on current performance
func (apd *AdaptivePromotionDecider) adaptThresholds() {
if apd.promotionAttempts < 10 || apd.fastStorageAccesses < 10 {
// Not enough data to adapt
return
}
currentHitRate := float64(apd.fastStorageHits) / float64(apd.fastStorageAccesses)
currentPromotionRate := float64(apd.promotionSuccesses) / float64(apd.promotionAttempts)
logger.Logger.Debug().
Float64("hit_rate", currentHitRate).
Float64("promotion_rate", currentPromotionRate).
Float64("target_hit_rate", apd.targetHitRate).
Float64("target_promotion_rate", apd.targetPromotionRate).
Msg("Adapting promotion thresholds")
// Adjust based on hit rate
if currentHitRate < apd.targetHitRate {
// Hit rate too low - be more aggressive with promotion
apd.adjustThresholdsMoreAggressive()
} else if currentHitRate > apd.targetHitRate+0.1 {
// Hit rate too high - be more conservative
apd.adjustThresholdsMoreConservative()
}
// Adjust based on promotion success rate
if currentPromotionRate < apd.targetPromotionRate {
// Too many failed promotions - be more conservative
apd.adjustThresholdsMoreConservative()
} else if currentPromotionRate > apd.targetPromotionRate+0.1 {
// High promotion success - can be more aggressive
apd.adjustThresholdsMoreAggressive()
}
// Reset counters for next adaptation period
apd.promotionAttempts = 0
apd.promotionSuccesses = 0
apd.fastStorageHits = 0
apd.fastStorageAccesses = 0
apd.lastAdaptation = time.Now()
logger.Logger.Info().
Int64("small_threshold_mb", apd.smallFileThreshold/(1024*1024)).
Int64("medium_threshold_mb", apd.mediumFileThreshold/(1024*1024)).
Int64("large_threshold_mb", apd.largeFileThreshold/(1024*1024)).
Dur("small_window", apd.smallFileWindow).
Dur("medium_window", apd.mediumFileWindow).
Dur("large_window", apd.largeFileWindow).
Msg("Updated promotion thresholds")
// Name wraps the underlying Name method
func (gc *GCFS) Name() string {
return gc.vfs.Name() + "(GC:" + string(gc.algorithm) + ")"
}
// updatePrometheusMetrics updates all Prometheus metrics with current values
func (apd *AdaptivePromotionDecider) updatePrometheusMetrics() {
// Update threshold metrics
promotionThresholds.WithLabelValues("small").Set(float64(apd.smallFileThreshold))
promotionThresholds.WithLabelValues("medium").Set(float64(apd.mediumFileThreshold))
promotionThresholds.WithLabelValues("large").Set(float64(apd.largeFileThreshold))
// Update window metrics
promotionWindows.WithLabelValues("small").Set(apd.smallFileWindow.Seconds())
promotionWindows.WithLabelValues("medium").Set(apd.mediumFileWindow.Seconds())
promotionWindows.WithLabelValues("large").Set(apd.largeFileWindow.Seconds())
// Update statistics metrics
hitRate := 0.0
if apd.fastStorageAccesses > 0 {
hitRate = float64(apd.fastStorageHits) / float64(apd.fastStorageAccesses)
}
promotionRate := 0.0
if apd.promotionAttempts > 0 {
promotionRate = float64(apd.promotionSuccesses) / float64(apd.promotionAttempts)
}
promotionStats.WithLabelValues("hit_rate").Set(hitRate)
promotionStats.WithLabelValues("promotion_rate").Set(promotionRate)
promotionStats.WithLabelValues("promotion_attempts").Set(float64(apd.promotionAttempts))
promotionStats.WithLabelValues("promotion_successes").Set(float64(apd.promotionSuccesses))
promotionStats.WithLabelValues("fast_storage_accesses").Set(float64(apd.fastStorageAccesses))
promotionStats.WithLabelValues("fast_storage_hits").Set(float64(apd.fastStorageHits))
// Size wraps the underlying Size method
func (gc *GCFS) Size() int64 {
return gc.vfs.Size()
}
// adjustThresholdsMoreAggressive makes promotion more aggressive
func (apd *AdaptivePromotionDecider) adjustThresholdsMoreAggressive() {
// Increase size thresholds (promote larger files)
apd.smallFileThreshold = minInt64(apd.smallFileThreshold*11/10, 50*1024*1024) // Max 50MB
apd.mediumFileThreshold = minInt64(apd.mediumFileThreshold*11/10, 200*1024*1024) // Max 200MB
apd.largeFileThreshold = minInt64(apd.largeFileThreshold*11/10, 1000*1024*1024) // Max 1GB
// Increase time windows (promote older files)
apd.smallFileWindow = minDuration(apd.smallFileWindow*11/10, 20*time.Minute)
apd.mediumFileWindow = minDuration(apd.mediumFileWindow*11/10, 5*time.Minute)
apd.largeFileWindow = minDuration(apd.largeFileWindow*11/10, 2*time.Minute)
// Record adaptation in Prometheus
promotionAdaptations.WithLabelValues("aggressive").Inc()
// Update Prometheus metrics
apd.updatePrometheusMetrics()
// Capacity wraps the underlying Capacity method
func (gc *GCFS) Capacity() int64 {
return gc.vfs.Capacity()
}
// adjustThresholdsMoreConservative makes promotion more conservative
func (apd *AdaptivePromotionDecider) adjustThresholdsMoreConservative() {
// Decrease size thresholds (promote smaller files)
apd.smallFileThreshold = maxInt64(apd.smallFileThreshold*9/10, 5*1024*1024) // Min 5MB
apd.mediumFileThreshold = maxInt64(apd.mediumFileThreshold*9/10, 50*1024*1024) // Min 50MB
apd.largeFileThreshold = maxInt64(apd.largeFileThreshold*9/10, 200*1024*1024) // Min 200MB
// GC functions
// Decrease time windows (promote only recent files)
apd.smallFileWindow = maxDuration(apd.smallFileWindow*9/10, 5*time.Minute)
apd.mediumFileWindow = maxDuration(apd.mediumFileWindow*9/10, 1*time.Minute)
apd.largeFileWindow = maxDuration(apd.largeFileWindow*9/10, 15*time.Second)
// Record adaptation in Prometheus
promotionAdaptations.WithLabelValues("conservative").Inc()
// Update Prometheus metrics
apd.updatePrometheusMetrics()
// gcLRU implements Least Recently Used eviction
func gcLRU(v vfs.VFS, bytesNeeded uint) uint {
// This is a simplified implementation
// In a real implementation, you'd need access to the internal LRU list
// For now, we'll just return the requested amount
return bytesNeeded
}
// GetStats returns current statistics for monitoring
func (apd *AdaptivePromotionDecider) GetStats() map[string]interface{} {
apd.mu.RLock()
defer apd.mu.RUnlock()
hitRate := 0.0
if apd.fastStorageAccesses > 0 {
hitRate = float64(apd.fastStorageHits) / float64(apd.fastStorageAccesses)
}
promotionRate := 0.0
if apd.promotionAttempts > 0 {
promotionRate = float64(apd.promotionSuccesses) / float64(apd.promotionAttempts)
}
return map[string]interface{}{
"small_file_threshold_mb": apd.smallFileThreshold / (1024 * 1024),
"medium_file_threshold_mb": apd.mediumFileThreshold / (1024 * 1024),
"large_file_threshold_mb": apd.largeFileThreshold / (1024 * 1024),
"small_file_window_minutes": apd.smallFileWindow.Minutes(),
"medium_file_window_minutes": apd.mediumFileWindow.Minutes(),
"large_file_window_seconds": apd.largeFileWindow.Seconds(),
"hit_rate": hitRate,
"promotion_rate": promotionRate,
"promotion_attempts": apd.promotionAttempts,
"promotion_successes": apd.promotionSuccesses,
"fast_storage_accesses": apd.fastStorageAccesses,
"fast_storage_hits": apd.fastStorageHits,
}
// gcLFU implements Least Frequently Used eviction
func gcLFU(v vfs.VFS, bytesNeeded uint) uint {
// Simplified implementation
return bytesNeeded
}
// Global adaptive promotion decider instance
var adaptivePromotionDecider *AdaptivePromotionDecider
func init() {
adaptivePromotionDecider = NewAdaptivePromotionDecider()
// gcFIFO implements First In First Out eviction
func gcFIFO(v vfs.VFS, bytesNeeded uint) uint {
// Simplified implementation
return bytesNeeded
}
// AdaptivePromotionDeciderFunc returns the adaptive promotion decision function
func AdaptivePromotionDeciderFunc(fi *vfs.FileInfo, cs cachestate.CacheState) bool {
return adaptivePromotionDecider.ShouldPromote(fi, cs)
// gcLargest implements largest file first eviction
func gcLargest(v vfs.VFS, bytesNeeded uint) uint {
// Simplified implementation
return bytesNeeded
}
// RecordFastStorageAccess records fast storage access for adaptation
func RecordFastStorageAccess() {
adaptivePromotionDecider.RecordFastStorageAccess()
// gcSmallest implements smallest file first eviction
func gcSmallest(v vfs.VFS, bytesNeeded uint) uint {
// Simplified implementation
return bytesNeeded
}
// RecordFastStorageHit records fast storage hit for adaptation
func RecordFastStorageHit() {
adaptivePromotionDecider.RecordFastStorageHit()
// gcHybrid implements a hybrid eviction strategy
func gcHybrid(v vfs.VFS, bytesNeeded uint) uint {
// Simplified implementation
return bytesNeeded
}
// GetPromotionStats returns promotion statistics for monitoring
func GetPromotionStats() map[string]interface{} {
return adaptivePromotionDecider.GetStats()
}
// Helper functions for min/max operations
func minInt64(a, b int64) int64 {
if a < b {
return a
}
return b
}
func maxInt64(a, b int64) int64 {
if a > b {
return a
}
return b
}
func minDuration(a, b time.Duration) time.Duration {
if a < b {
return a
}
return b
}
func maxDuration(a, b time.Duration) time.Duration {
if a > b {
return a
}
return b
}
// Ensure GCFS implements VFS.
var _ vfs.VFS = (*GCFS)(nil)
// GCFS is a virtual file system that calls a GC handler when the disk is full. The GC handler is responsible for freeing up space on the disk. The GCFS is a wrapper around another VFS.
type GCFS struct {
vfs.VFS
gcHanderFunc GCHandlerFunc
}
// GCHandlerFunc is a function that is called when the disk is full and the GCFS needs to free up space. It is passed the VFS and the size of the file that needs to be written. Its up to the implementation to free up space. How much space is freed is also up to the implementation.
type GCHandlerFunc func(vfs vfs.VFS, size uint) error
func New(vfs vfs.VFS, gcHandlerFunc GCHandlerFunc) *GCFS {
return &GCFS{
VFS: vfs,
gcHanderFunc: gcHandlerFunc,
}
}
// Create overrides the Create method of the VFS interface. It tries to create the key, if it fails due to disk full error, it calls the GC handler and tries again. If it still fails it returns the error.
func (g *GCFS) Create(key string, size int64) (io.WriteCloser, error) {
w, err := g.VFS.Create(key, size) // try to create the key
for err == vfserror.ErrDiskFull && g.gcHanderFunc != nil {
errGC := g.gcHanderFunc(g.VFS, uint(size)) // call the GC handler
if errGC == ErrInsufficientSpace {
return nil, errGC // if the GC handler returns no files to delete, return the error
}
w, err = g.VFS.Create(key, size)
if err == vfserror.ErrDiskFull {
// GC handler did not free enough space, avoid infinite loop
return nil, ErrInsufficientSpace
}
}
if err != nil {
if err == vfserror.ErrDiskFull {
logger.Logger.Error().Str("key", key).Int64("size", size).Msg("Failed to create file due to disk full, even after GC")
} else {
logger.Logger.Error().Str("key", key).Int64("size", size).Err(err).Msg("Failed to create file")
}
}
return w, err
}
func (g *GCFS) Name() string {
return fmt.Sprintf("GCFS(%s)", g.VFS.Name()) // wrap the name of the VFS with GCFS so we can see that its a GCFS
// AdaptivePromotionDeciderFunc is a placeholder for the adaptive promotion logic
var AdaptivePromotionDeciderFunc = func() interface{} {
return nil
}